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Abstract
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1. Introduction

Background: Diabetic glaucoma is a serious eye disorder that can lead to permanent vision loss
and is increasingly seen in individuals with long-term diabetes. With its rising global incidence,
there is a critical need for early and reliable methods of detection to prevent severe complications.
Objective: This study highlights the growing role of artificial intelligence (Al), especially deep learning
technologies, in identifying diabetic glaucoma at an early stage. It also reviews progress in bionic
eye technologies designed to help restore vision in affected individuals. Methods: Relevant scientific
literature was reviewed by searching databases including PubMed, Taylor francis, ScienceDirect, MDPI,
and Bentham. Articles published up to 2025 were considered, focusing on terms such as “diabetic
glaucoma,” “retinal imaging,” “deep learning,” “Al in eye care,” “bionic eye,” and “neuroprosthetics.”
Studies were selected based on their relevance to diagnostic innovations and vision-restoration
technologies. Results: Recent developments in Al have enabled more accurate interpretation of
retinal images, such as those from fundus cameras and optical coherence tomography (OCT), aiding
in early detection of structural changes linked to glaucoma. At the same time, bionic eye systems—
based on neuroprosthetic implants—are showing promise in partially restoring vision in cases of
severe visual impairment. Conclusion: Combining Al-powered diagnostics with emerging bionic eye
technologies represents a major shift in managing diabetic glaucoma. These innovations have the
potential to improve early detection and offer new options for visual rehabilitation, paving the way
for more effective patient care in ophthalmology.

Diabetic glaucoma, Artificial intelligence, Retinal imaging, Deep learning, Bionic eye, Visual prosthesis

in diabetic patients is complex, largely driven by
chronic high blood sugar, which damages the small
blood vessels in the retina, raises intraocular pressure

Glaucoma remains the second leading cause of
irreversible blindness worldwide and is especially
common among people with diabetes. Its development
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(IOP), and gradually leads to degeneration of the
retinal nerve fiber layer (RNFL) and optic nerve. The
two main forms seen in diabetes are primary open-
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angle glaucoma (POAG) and neovascular glaucoma
(NVG), both of which present significant diagnostic
challenges. Early changes in vision or retinal structure
can be subtle and are often masked by overlapping
damage from diabetic retinopathy [1].

Machine learning (ML) and deep learning (DL), two
major advancements in artificial intelligence (AI), have
become powerful tools for the early detection and
diagnosis of diabetic glaucoma. These Al algorithms
are trained on large datasets of OCT scans and retinal
fundus images. As a result, they can now detect early
signs of the disease with impressive accuracy, often
outperforming human specialists in both sensitivity
and consistency [2]. These technologies have the
ability to raise patient outcomes and enable earlier
leadership by recognizing glaucomatous damage
before significantly higher vision loss starts.

At the same time as diagnostic innovations,
therapeutic improvements like bionic eye technology
are growing in popular. These devices use bioelectronic
components and brain stimulation techniques to
assist individuals with severe retinal degeneration
repair functional vision. Bionic eyes, involving the new
cortical implants and the Argus II retinal prosthesis,
show especially promise for people with end-
stage glaucoma for whom traditional therapies are
inadequate. These technologies, and that remain in the
preclinical and clinical trial stages, represent a frontier
in visual neuroproteins with ongoing research aimed
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at improving visual resolution, biocompatibility, and
brain integration (Figure 1).

This review examines the at present state of bionic
eye technologies and potential future orientations,
additionally worrying the revolutionary role of Al in
detection and monitoring. It also looks at the clinical
and the pathophysiology features of diabetic glaucoma.
together all of these developments mark a paradigm
shift in the knowledge, diagnosis, and management of
diabetic glaucoma, offering those who have it hope for
early intervention and visual rehabilitation [3, 4].

2. Essential Perspective on Al Application
in Imaging and Medicine

By enabling more rapid more precise, and more
personalized diagnosis and treatment in fields as
radiology and pathology, Al has changed medicine,
particularly in the field of medical imaging. Al tool
integration into clinical workflows has the possibility
to significantly enhance healthcare efficiency and
quality. Al fundamentally involves machines copying
human brain processes like learning, reasoning, and
decision-making. Machine learning and deep learning,
in particular convolutional neural networks (CNNs),
are crucial to evaluating complex medical images like
retinal scans, MRIs, and X-rays. However, unlike human
experts, Al models were able to "understand" these
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Figure 1. Al-Driven Workflow in Systems Biology and Precision Medicine
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pictures or medical ideas; rather they find statistical
patterns and relationships in huge datasets that
physicians would not see. Al is quite powerful for this
data-driven strategy, but it also heavily relies on high-
quality and variety of the training data. Al technologies'
accuracy and scalability rely substantially on large-
scale, well-labeled datasets that include multiple types
of patient demographics, illness stages, and imaging
techniques.

Data biases can restrict model performance or even
worsen healthcare inequities. Examples of these biases
include the overrepresentation of specific clinical
diseases or ethnicity. In addition, Al systems trained in
a particular setting failed to operate as well in another
due to variations in imaging tools and methods
throughout institutions, highlighting the necessity
for varied, representative datasets to create strong,
dependable Al applications [5].

Because a lot of deep learning models serve as ‘black
boxes’, which generate predictions without obvious
explanations, transparency and interpretability
still are big problems for medical Al. To trust and
employ Al ideas properly in an area like medicine,
where decisions can have life-or-death consequences,
practitioners require interpretable outputs. To enhance
physician adoption and regulatory monitoring, the
explainable Al community is developing methods that
elucidate how models reach their results—e.g., visual
heatmaps that emphasize the image regions pertinent
to a task. If Al is to really benefit health care, it must
seamlessly integrate in today’s processes. Tools that
clash with day-to-day work or require significant
manual input often face adoption barriers. Rather than
replacing human judgment, Al should ideally augment
physicians’ capabilities by offering assistance with
screening, organizing and decision support. Equally
important is presenting Al output information in an
intuitive clear way, allowing for rapid interpretation
and medico-legal decisions. Today’s processes Al
needs to easily fit into today’s processes if it is going
to have a meaningful impact on healthcare. Tools that
are disruptive, because they don’t work with existing
tasks, or require a lot of manual input, have barriers
to adoption. Instead of taking the place of human
judgment, Al should ideally enhance physicians' ability
by helping with screening, organizing, and decision
support. Ensuring that the Al-generated data are
simple, interpretable, and rational that allow quick
answer and medical decisions is also important. Ethical
and legal dilemmas are central when it comes to using
Al in health. High privacy and security standards (e.g.,
GDPR and HIPAA) have to be respected to ensure
the privacy of patients, as medical data are sensitive
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and confidential [6,7]. Furthermore, for the equitable
provision of healthcare to diverse populations,
developers should also work together to minimize bias
in Al models. only based on (standard) static approval
process, regulatory bodies are moving toward
adapting their frameworks to manage particular
issues related to Al. Among these challenges is that of
necessary adaptive forms of oversight, which would
need to accommodate the capability of Al systems to
learn and improve even after deployment. Even as
Al makes strides, it remains fundamentally broken.
In order to maintain clinical safety and effectiveness,
deployed models must be constantly monitored,
acknowledged, and acted upon as warning signs to
avoid false positives and negatives such as in rare and
complex cases. To offer truly personalized medicine,
it may be such as combining imaging data with
genetic, clinical and lifestyle information.” Moreover,
expanding the application of Al to cutting-edge fields
such as neuroprosthetics and dynamic rehabilitation
technologies, could further increase patient outcomes
[8-10].

3. Approaches using artificial intelligence
for detecting diabetic glaucoma

Millions of individuals worldwide are living with
diabetes mellitus, a long-term metabolic condition
that can lead to diabetic glaucoma, an unsafe eye
consequence. This disorder is born out of the
convergence of glaucoma and diabetic retinopathy, two
main causes of vision loss. When high I0P, or vascular
and metabolic changes carried on by diabetes damage
the optic nerve, it can induce diabetic glaucoma, which,
if unregulated, can cause slow irreversible visual
impairment or blindness. Early diagnosis is important
to prevent visual loss from diabetic glaucoma.
But early stages of diabetic glaucoma can have no
symptoms, or few ones that are easily overlooked; and
commonalities of diabetic retinopathy (DR), such as
retinal vascular abnormalities, could complicate the
manifestation, and result in a difficult differentiation.
IOP measurement, funduscopic confirmation of
optic nerve head (ONH), visual field testing to detect
function loss, and imaging techniques such as OCT
for visualization of structural changes in the retinal
nerve fibre layer form part of conventional diagnostic
algorithms. Although effective these techniques
require special equipment and skilled interpretation.
In addition, early diagnosis remains challenging in
many regions with limited access to ocular specialists
[11]. In this situation, Al is a promising tool that has
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a chance to transform diabetic glaucoma screening.
Al, specifically ML and DL, uses a big data of clinical
information and images to detect patterns that
potentially describe evidence of early glaucomatous
damage. These methods can interpret complex
imaging, such as fundus images, OCT scans, and visual
field reports, frequently detecting abnormalities
that are not visible to human observers [12]. By
automating the process of image interpretation, Al
has the potential to improve the accuracy of diagnosis,
decrease interobserver variability, and pave the way
for large scale screening, to include under-served
patient populations.

More broadly, leveraging Al to diagnose diabetic
glaucoma represents a trend in healthcare towards
precision medicine-- where personalized risk
assessment and treatment are enabled by data-driven
solutions. Nonetheless, Al needs broad, high quality
datasets and careful testing in clinical environment
in order to realize those potential benefits. Ethical
considerations such as algorithmic fairness, data
privacy and patient privacy must also be considered
to facilitate safe and equitable deployment. With
these advancements in mind, the application of Al
in diagnosing diabetic glaucoma holds significant
promise for transforming early detection, enhancing
patient care, and ultimately reducing the burden of
blindness associated with this complex condition.
However, it remains crucial to explore how these
emerging computational approaches can reshape
ocular management by addressing the underlying
pathophysiology, diagnostic challenges, and the role of
Al-based tools in diabetic glaucoma [13].

3.1. Al in Early Detection of Diabetic Glaucoma

3.1.1. Role of Retinal Imaging and OCT

Given that they afford precise identification of
important ocular structures associated with disease
processes, retinal imaging and OCT have entirely
transformed the diagnosis and treatment of glaucoma.
The ONH, RNFL, and macula are the primary affected
structures in glaucoma. These structures are critical
and early targets for the diagnosis of glaucomatous
damage. High-resolution fundus photography provides
clear optic disc images for healthcare providers to
examine glaucomatous optic neuropathy signs, such as
increased cup-to-disc ratio, a decrease in neuroretinal
rim, and optic dischaemorrhages. OCT, on the other
hand, allows quantitative, cross-sectional measures of
the macular ganglion cell complex and RNFL thickness
to be captured, which has helped investigators
in identifying subclinical, early structural losses
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predetermining functional visual field constraints. This
characteristic is of special benefit to the detection of
normal-tension glaucoma and early glaucoma because
the disease may be present with a normal intraocular
pressure, a situation in which conventional screening
methods are usually inadequate. OCT programs have
implications in both diagnosis and monitoring the
disease process given their precise quantification and
reproducibility, allowing for more tailored and timely
treatment approaches [14]. The implementation
of retinal imaging and OCT in Al systems has also
transformed the management of glaucoma by
improving the speed and accuracy of diagnosis.
Artificial intelligence models trained on large retinal
image datasets are able to detect glaucomatous
damage earlier and more accurately as they can pick
up subtlears and early structural changes outside the
range of human perception (Figure 2). These emerging
Al technologies show great promise for glaucoma
screening, particularly in low-resource settings where
access to specialized expertise is limited. Tools such
as OCT and fundus photography play a vital role in
this effort, as the integration of high-resolution retinal
imaging with advanced computational analysis enables
earlier diagnosis, more accurate risk assessment, and
more cost-effective disease management—all with the
ultimate goal of preserving vision.

3.1.2. Fundus Photography

Fundus photography is a fundamental imaging
modality that has been widely used for the diagnosis
and monitoring of glaucoma, for which it plays a
crucial role by presenting vital visual information
of the retina, ONH, and surrounding vasculature. By
providing two-dimensional, colour images of the
posterior pole, fundus photography allows clinicians
to visualize and record the glaucomatous changes that
occur within the optic disc and its surrounding retinal
tissues. One of the diagnostic features of glaucoma that
can be observed using fundus photography is optic
disc cupping, which is defined as elevation of the cup-
to-disc ratio (CDR). This is accompanied by ongoing
axonal degeneration of retinal ganglion cell axons and
progressive thinning of the neocortical rim, which
results in the central depression (or “cup”) of the
optic nerve head expanding relative to the entire disc
area. Longitudinal CDR changes are crucial to achieve
progression determination of the disease [15].

Fundus photography also facilitates to identify
neuroretina rim thinning that frequently proceeds
functional vision field defect. As glaucoma progresses,
the rim (protective nerve fibers around the edge) thins,
the way it thins can suggest the kind and degree of
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Figure 2. Al-Driven Innovations in Glaucoma Diagnosis and Treatment

glaucoma. Another common finding among glaucoma
patients is periphery atrophy, which presents as an
area of Chori retinal atrophy and retinal pigment
epithelium surrounding the optic nerve head on a
fundus image [16]. It is associated with glaucomatous
optic neuropathy (GON), and it has been associated
with the stage and nature of the disease.

Due to its non-invasive nature, short capture time
and low cost, it is an ideal tool for use in community
wide comprehensive glaucoma screening programs,
particularly in low-resource settings. The screening
can even be carried out in mobile units or community
clinics - thanks to fundus cameras, which are simpler
and more available than more sophisticated imaging
techniques such as optical OCT. This makes early
detection very easy and is very important as one
can then be tested early enough leading to early
intervention, since glaucoma itself does not generally
have symptoms until it is at advanced stages.

The Uvea and Fundus Photography Advances in
digital imaging and telemedicine also have significantly
extended the usefulness of fundus photography.
The storage, transmission and analysis of digital
images at remote locations allows teleophthalmology
consultations and Al-based screening programmes. Al-
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infrastructure that is capable of accurately detecting
glaucomatous features such as peripapillary atrophy,
rim thinning, and an elevated cup-to-disc ratio may be
trained on a large number of fundus photographs. This
might improve diagnostic consistency and decrease
inter-operator difference in subjective clinical
judgment [17].

The fundus photography is a helpful option in the
diagnosis and treatment of glaucoma because it can
contribute to a comprehensive visual assessment of
the optic nerve head structure as well as changes of the
peripapillary. Due to its ease of use, wide availability,
and compatibility with modern Al technologies, fundus
photography has become a critical tool in the global
fight against glaucoma, enabling early detection and
timely intervention before irreversible vision loss
occurs.

3.1.3. OCT

OCT has gained popularity as an imaging modality
helpful in the diagnosis and monitoring of glaucoma.
It uses cross-sectional, high-resolution scans of the
retina and optic nerve head that are acquired with
near-infrared light waves. This non-invasive approach
to assessing the key anatomical structures involved
in glaucomatous optic neuropathy enables both
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rapid diagnosis and accurate monitoring of disease
progression [18-20]. One of the most crucial factors
seen with OCT in the evaluation of glaucoma is the
thickness of the RNFL. Unmyelinated RGC axons
converge at the optic nerve head to create RNFL, which
sends visual data to the brain. Because the RNFL thins
in glaucoma, these axons eventually vanish. OCT gives
doctors a precise, repeatable measurement of the area
around the optic disc, which enables them to identify
any small alterations that could be occurring before
obvious visual field loss. RNFL loss, a hallmark of
glaucomatous damage, is a crucial biomarker for both
detecting and tracking the course of the illness.

In addition to RNFL analysis, OCT assesses the
Ganglion Cell Complex (GCC), which is made up of the
inner plexiform layer, retinal ganglion cell (RGC) layer,
and nerve fibre layer within the macula. Given that
a sizable portion of RGCs is observed in the macular
region, GCC analysis adds context to RNFL findings
and can be especially helpful in the early detection of
glaucoma. It has been demonstrated that alterations in
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GCC thickness, which contribute to ganglion cell death,
correlate with functional impairment in glaucoma
patients.

OCT can also provide a detailed view of the optic
nerve head's architecture, particularly the lamina
cribrosa, a sieve-like connective tissue structure
through which RGC axons leave the eye. Structural
alterations in the lamina cribrosa, such as posterior
displacement, thinning, or focal defects, are implicated
in glaucomatous optic nerve injury and axonal damage
(Table 1). Advanced OCT imaging techniques, including
enhanced depth imaging (EDI) and swept-source
OCT, enable better visualization and quantification of
lamina cribrosa changes, providing insights into the
biomechanical effects of elevated intraocular pressure
and other pathogenic mechanisms [21].

The high-resolution, objective, and quantitative
nature of OCT imaging enhances its clinical utility in
glaucoma management. It allows early identification
of structural damage before functional deficits
become apparent on standard automated perimetry.

Table 1. OCT-Derived Quantitative Biomarkers in Glaucoma Diagnosis and Monitoring

OCT-Derived Quantitative

. Description
Biomarker p

Clinical Utility

RNFL Thickness

Macular GCC Thickness

Ganglion Cell-Inner Plexiform
Layer (GCIPL) Thickness

ONH Parameters

Lamina Cribrosa (LC)

Peripapillary Retinal Nerve
Fiber Layer (cpRNFL)

Inner Plexiform Layer (IPL)
Thickness

Measurement of the thickness of
the nerve fiber layer around the
optic nerve head.

Measures the combined thickness
of the macular RNFL, ganglion cell
layer (GCL), and inner plexiform
layer (IPL).

Measures the thickness of the
GCL and IPL.

Includes measurements like
cup volume, cup diameter, and
neuroretinal rim thinning.

A fenestrated collagenous
structure that is the primary site
of retinal ganglion cell injury.

Specific measurement of the
circumpapillary RNFL.

Measurement of the IPL
thickness.

A widely used and popular parameter for glaucoma
diagnosis and monitoring progression. Thinning is a
key indicator of glaucomatous damage.

Macular parameters can be superior for detecting

early glaucoma, especially in cases of high myopia.

A key biomarker due to the high concentration of
retinal ganglion cells in the macula.

The GCIPL and inferior GCIPL have been shown
to have the best diagnostic value for glaucoma.
Asymmetry across the horizontal raphe is a good
indicator of early glaucoma.

These parameters are able to differentiate between
healthy and glaucomatous eyes, and are correlated
with structural damage.

Enhanced-depth imaging (EDI) OCT allows for in-
vivo examination of the LC, with changes in its
morphology, deformation, and vascular perfusion
serving as biomarkers.

Useful in the early detection of glaucoma, though
measurements can be affected by individual
variations like myopia.

May serve as a biomarker to detect impairment of

retinal ganglion cell function in early glaucoma, as

morphological alterations in RGC dendrites might
be seen in pre-perimetric and early glaucoma.
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Moreover, serial OCT scans enable precise monitoring
of disease progression, facilitating timely adjustments
in therapy to prevent irreversible vision loss. The
integration of OCT data with Al and machine learning
algorithms further augments glaucoma care by
improving diagnostic accuracy and risk stratification.
Al systems trained on large OCT datasets can detect
subtle patterns of RNFL and GCC thinning, predict
progression, and assist clinicians in decision-making,
especially in challenging cases such as normal-tension
glaucoma or atypical optic nerve appearances [22].

OCT provides a comprehensive, non-invasive
means of assessing critical retinal and optic nerve
structures affected in glaucoma. Its ability to measure
RNFL thickness, GCC integrity, and optic nerve head
morphology, including lamina cribrosa status, makes
it a cornerstone of modern glaucoma diagnosis and
monitoring. By facilitating early detection and precise
tracking of glaucomatous damage, OCT plays a vital
role in preserving vision and improving patient
outcomes (Table 2).

Al tools can now detect glaucoma with sensitivity
>90% using only fundus photos or OCT scans, often
outperforming general ophthalmologists in early-stage
diagnosis.

3.2. DL and CNNs

CNNs, a subclass of deep learning algorithms, have

Tiwari et al.

transformed medical image analysis. Their specific
capacity to automatically extract and learn hierarchical
visual characteristics from retinal pictures makes them
especially well-suited for ophthalmic applications.
CNNs have proven to have outstanding diagnostic
capabilities in the detection of diabetic glaucoma and
other retinal pathologies. For important pathological
markers like vascular abnormalities, RNFL thinning,
and optic disc cupping- markers of glaucomatous
damage and diabetic retinopathy—reported area
under the curve (AUC) values frequently surpass
0.90. The layered architecture of CNNs—comprising
convolutional, pooling, and fully connected layers—
stands in contrast to traditional machine learning
models, which rely on handcrafted features and
domain-specific knowledge. This structure allows them
to progressively learn complicated patterns by starting
with low-level elements like edges and textures and
working their way up to high-level features like blood
vessel morphology or optic disc structure. Such a
feature hierarchy is helpful in identifying traces of
clinical symptoms that may not be apparent to the
unaided eye or a conventional diagnosis, particularly
in situations that are early stage or overlap, like
diabetic glaucoma. The rise of CNN-based approaches
involved the presence of large annotated datasets such
as Eyepatch (heavily used for diabetic retinopathy
detection), RIM-ONE (Retinal Images for Optic Nerve

Table 2. Imaging Modalities Ideal for Al Integration in Glaucoma and Their Benefits

Imaging Modality Description

Al-Relevant Benefits

OoCT

Fundus Photography disc

Scanning Laser Ophthalmoscopy High-contrast retinal imaging using
laser scanning

(sLo)

OCT-Angiography (OCT-A)

Measures functional vision loss
across the field of view

Visual Field Testing (SAP)

Ultrasound Biomicroscopy

BM
i ) structures

Corneal Topography/
Tomography

Cross-sectional imaging of retina
and optic nerve

2D images of the retina and optic

Non-invasive imaging of retinal
and choroidal microvasculature

High-frequency ultrasound
imaging of anterior segment

Maps corneal shape and curvature

High-resolution data; layer segmentation; ideal
for structural damage detection

Widely available; large datasets; enables deep
learning for optic nerve head analysis

Detailed visualization of nerve fiber layer; aids in
precise feature extraction

Provides vascular biomarkers; useful for
detecting perfusion changes in glaucoma

Enables Al to correlate structural-functional loss;
prediction of disease progression

Structural input for angle-closure diagnosis;
enhances anatomical interpretation

Useful for detecting secondary glaucomas;
supplementary input for comprehensive Al
models

Visualizes structures in the

Anterior Segment OCT
lens)

anterior chamber (e.g., angle, iris,

High-definition input for angle-closure glaucoma;
integration with clinical decision tools
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Evaluation) and ORIGA (Online Retinal Fundus Image
Database for Glaucoma Analysis) that have significantly
contributed to the increase in CNN performance in
ophthalmology, by providing representative and
diverse image sets pair for supervised learning. These
data have allowed CNN models to also generalize
across differing populations and imaging conditions,
having overall more robustness and translational
efficacy.

Moreover, transfer learning—a technique where
models pretrained on large, generic image datasets like
ImageNet are fine-tuned on retinal data—has further
improved model performance in settings where
domain-specific datasets are limited (Figure 3) [23]. In
ophthalmic Al applications, CNN-based models have
been integrated into tools capable of segmenting optic
nerve head boundaries, classifying the cup-to-disc
ratio, detecting microaneurysms or neovascularization,
and even predicting disease progression. Additionally,
recent innovations such as attention mechanisms
and hybrid models combining CNNs with recurrent
layers or transformers are pushing the boundaries
of performance and interpretability. CNNs have
drawbacks despite their great accuracy; they
frequently operate as "black boxes," providing no
insight into their decision-making procedures,
which makes clinical adoption difficult. Because of
this, explainable Al frameworks that superimpose
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heatmaps or saliency maps to show which areas
of the image affected the model's prediction are
becoming more and more popular. These frameworks
are crucial for gaining the trust of clinicians and
obtaining regulatory approval (Table 3). Nonetheless,
the application of CNNs in ophthalmology represents
a significant advancement in automated diagnosis,
with potential to democratize eye care, support early
detection in underserved regions, and reduce the
burden on overextended healthcare systems. Their
continued evolution—alongside improvements in
dataset diversity, interpretability, and multimodal
integration—positions CNNs as a cornerstone of Al-
driven solutions for complex ocular conditions such as
diabetic glaucoma [24] (Table 4).

3.2.1. Fundus-Al in telemedicine: Cloud-based
glaucoma screening

The integration of fundus-Al technology into
telemedicine platforms is transforming the screening
process for glaucoma by facilitating remote, cloud-
based analysis of colour fundus pictures. This
technology is particularly useful for the early diagnosis
and treatment of this eye-threatening condition.
Preventing permanent vision impairment requires
prompt detection of glaucoma, which is characterised
by progressive optic nerve injury that is sometimes
only discovered after severe structural loss. In many

Predictive
Analytica

Glaucoma
Diagnosis

Glaucoma
Screening

Personalized
Treatment

Outcome
Improvement

Artificial Intelligence (Al)

Machine Learning (ML)

Deep Learning (DL)

Data Collection

Patient
Education

Natural Network(NN)

Figure 3. Application of Al/ML in Glaucoma Screening and Treatment.
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Table 3. CNN-Detectable Glaucoma Features and Their Clinical Significance

Tiwari et al.

CNN-Detectable Feature

Description

Clinical Significance

CDR

Neuroretinal Rim Thinning

RNFL Defects

Peripapillary Atrophy (PPA)

Optic Disc Hemorrhage

Asymmetry in CDR Between Eyes

Vessel Bending at Cup Edge

Bayonetting of Blood Vessels

Laminar Dots Visibility

Paracentral Visual Field Defects
(via indirect inference)

Ratio of the diameter of the optic
cup to the entire optic disc

Loss of rim tissue around the optic
nerve head

Focal or diffuse RNFL loss in fundus
images
Atrophic changes around the optic
disc
Flame-shaped hemorrhage at the
disc margin
Unequal cup-to-disc ratio between
the two eyes
Blood vessels bend sharply into the
optic cup
Sharp angulation of blood vessels
over the edge of the cup

Exposure of lamina cribrosa within
the optic cup

Early glaucomatous field loss inferred
from fundus and OCT patterns

Increased CDR (>0.6) is a hallmark of
glaucomatous optic neuropathy

Early sign of glaucoma; especially significant
in the inferior and superior regions

Indicates axonal damage and progression of
glaucoma

Often associated with glaucomatous damage;
more commaon in myopic eyes

A strong predictor of glaucoma progression

Inter-eye asymmetry (>0.2) may suggest
glaucomatous damage

Associated with deepening of the cup and
glaucomatous excavation

Indicates advanced glaucomatous cupping

Sign of severe optic nerve head damage

Critical for early detection when central
vision is still preserved

Table 4. Representative CNN Architectures in Glaucoma Diagnosis

CNN Architecture

Use/Benefit in Glaucoma Diagnosis

AlexNet

VGG, ResNet, MobileNet

YOLO (You Only Look Once)

U-Net

GlauNet

Used for glaucoma classification, achieving high accuracy on retinal fundus image datasets.

Common architectures used for transfer learning in glaucoma detection from fundus

images. They are effective for feature extraction and classification.

Used as a component in a two-step system to first detect the optic disc region in fundus

photographs, and then classify it as glaucomatous or non-glaucomatous.

Primarily used for segmenting the optic disc and optic cup, which is a crucial step in

calculating the cup-to-disc ratio (CDR) for glaucoma screening.

A new CNN architecture specifically designed for glaucoma diagnosis using OCT-

angiography (OCTA) imaging.

Combine CNNs with other deep learning techniques like Bidirectional Long Short-Term

Hybrid Models

Memory (BiLSTM) or Vision Transformers (EViT) to leverage different feature types (e.g.,

spatial and temporal) for improved performance.

Custom 2D CNNs

Shallow CNN architectures can be designed with a few convolutional layers to be

computationally efficient for real-time glaucoma diagnosis from fundus images.

places, access is limited by the requirement for
specialised equipment and interpretation, which
restricts the application of conventional screening
methods. These challenges are addressed by fundus-
Al systems that use deep learning algorithms trained
to identify glaucomatous changes such as increased
cup-to-disc ratio, neuroretina rim thinning, and
peripapillary atrophy directly from fundus images.
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Internal validation experiments of these Al models
have proved its great diagnostic accuracy (89.7%)
and area under the curve of the receiver operating
characteristic (AUC) of 0.93, with excellent sensitivity
and specificity values in detecting glaucoma suspects.
External validation in diverse populations has
confirmed the robustness of these algorithms with an
AUC of 0.85 and accuracy of 83.5%, thus highlighting
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their generalizability in clinical settings [25].

Images of the fundus are taken in the primary clinic
or at a screening site and then securely transmitted
to a cloud server as done in the telemedicine
framework that utilizes cloud computing to
facilitate remote assessment. These photos are then
automatically analyzed by an Al system, which flags
any individuals displaying signs that may suggest
they have the potential to develop glaucoma. This
computerized triage significantly lessens the burden
on ophthalmologists. It also enables to diagnose at-risk
patients early and conduct further examinations and
intervention more objectively. Telehealth platforms
such as Fundus-Al would lower barriers for individuals
of low socioeconomic status or living in rural areas to
be screened in communities with limited access to eye
care specialists and without on-site expert evaluation
[26].

Moreover, since it also facilitates the use of
commercial fundus cameras rather than more
expensive imaging equipment such as optical
coherence tomography, this approach allows a cost-
effective and scalable glaucoma screening in resource
limited regions. Fast turnaround time for Al analysis
also enhances the efficiency of clinical workflow
through the potential for immediate referral and start
of therapy before irreversible damage to the optic
nerve. The data privacy and patient confidentiality
measure of these systems is fundamental for retaining
patient trust and ensuring compliance to healthcare
law [27].

In conclusion, Fundus-Al integrated in telemedicine
systems provides a robust method for glaucoma
screening, which combines the performance of
Al-based image evaluation with the convenience
of an application for remote healthcare service.
Such a technology is very promising and likely to
revolutionize glaucoma detection worldwide, improve
early diagnosis, prevent vision loss, and decrease
the public health burden related to this chronic eye
condition [28].

3.2.2. Smartphone-based offline Al screening in
India

These challenges can be effectively tackled using
Fundus-Al systems, which employ deep learning
algorithms trained to identify glaucomatous changes—
such as an increased cup-to-disc ratio, neuroretinal
rim thinning, and peripapillary atrophy—directly
from fundus images. Internal validation studies of
these Al models have demonstrated strong diagnostic
performance, achieving an AUC of 0.93 and an
accuracy of 89.7%, along with excellent sensitivity and
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specificity in detecting glaucoma suspects. Type 2 DM
risk prediction in addition, four external validations
in different populations have verified the stability
of the models, where AUC was 0.85 and accuracy of
83.5%, respectively, demonstrating the generalization
characteristics of these risk prediction models in a real
scenario [29].

Images of the fundus captured at primary care
clinics or screening locations are securely transmitted
to cloud servers, which are part of the telemedicine
framework's cloud computing for remote image
interpretation. By automatically scanning these photos,
the Al system notifies those with symptoms that could
be indicative of glaucoma. This computerized triage
significantly reduces the burden on ophthalmologists
and also makes it possible to detect patients at risk
earlier and provide them with comprehensive eye
exams and intervention. Fundus-Al telemedicine
strategies overcome these health disparities by
increasing screening coverage in low-income rural
communities and by minimizing the need for on-site
specialist examination [30].

Additionally, since this method requires only
accessible fundus cameras rather than more advanced
imaging techniques such as optical coherence
tomography, it promotes low-cost glaucoma screening
and is adaptable to resource-poor areas. Rapid
turnaround for Al analysis also maximizes the clinical
workflow to the overall benefit of allowing early
referral and therapy to be started before the optic
nerve is greatly damaged. Information security and
patient privacy procedures are important for these
systems to gain patient trust and ensure compliance
with healthcare regulations [31, 32]. Combining the
convenience of telehealth-based care delivery with the
precision of Al-enhanced image analysis, telemedicine
platforms-based Fundus-Al represents a powerful
glaucoma screening tool. Such technology has great
potential for changing the current paradigm of
glaucoma diagnosis worldwide, and could contribute
to the early detection of the disease, which in turn
prevents vision impairment and subsequently reduces
public health problems related to this chronic eye
disease (Table 5).

3.2.3. Limitations and Ethical Considerations

Although Al-based tools for glaucoma screening
and diagnosis hold significant promise, there are
several limitations and ethical considerations that
must be carefully considered to deploy these tools
safely, equitably, and effectively. A first issue is the
generalizability of Al models to varying populations
and imaging devices. A large number of algorithms
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Table 5. Al-Powered Platforms in Glaucoma Detection: Settings & Performance

Platform Modality Setting Performance

o+ 59 - -
Googlg DeepMind OCT scans Clinics/hospitals 94.5% accu'racy in detecting
Moorfields diseases

0, 0, .
IDx-DR (Digital Diagnostics) Fundus photos Primary care, retail clinics 87% Sens, 90% Spgc 2T DL
expanding
Cloud-based fundus-Al Fundus photos via - AUC 0.93 internal; AUC 0.85
- Remote clinics

(telemedicine) cloud external

Offline smartphone Al Smartphone fundus

Community/rural outreach

93.7% Sens, 85.6% Spec for

(India) referable glaucoma

are learned and tested from demographic or imaging
system-specific data that potentially preclude their
performance to other populations with distinct
ethnic, anatomical or clinical conditions, or with
different equipment and acquisition protocols. Such
non-generalizability may contribute to diminished
diagnostic accuracy and clinical utility in real-world
(e.g., underserved or globally diverse) populations. The
issue of algorithmic bias is closely connected, as this
phenomenon occurs when training datasets are biased
against specific social groups. If Al systems are based
on data from one population (say people of European
descent), they could be less accurate when it comes
to spotting glaucoma in other racial or ethnic groups,
making disparities in health worse instead of better.
Another important concern is the interpretability (or
transparency) of many Al-models, especially based
on deep learning. These so-called “black box” systems
only produce a diagnostic output but do not explain it,
this resulting in a very difficult trust and verification
path for clinicians. This lack of transparency raises
concerns not only for clinical oversight, but also for
regulatory authorization and the concept of patient
consent. In addition, the application of Al systems in
telemedicine and cloud seems to face the challenges
on data safety and patient privacy. Retinal images
and patient health information are sensitive medical
records that should be processed in compliance
with privacy regulations like HIPAA or GDPR. Patient
trust and legal compliance can be weakened due to
the risks of data breach, unauthorized access and
misuse of data, particularly while data is exchanged
and stored in cloud infrastructures. However, there
is a need for transparency of how data is collected,
processed and used, who has contributed to it, and
what are the mechanisms for consent, anonymization
and auditability as well as of the mechanisms for
ethical deployment. Finally, the use of Al tools
should not foster over-reliance or de-skilling of
human administrators, but rather that Al should be
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a complement to, and not a replacement for, human
clinical judgement. In summary, while Al holds
transformative potential in glaucoma care, addressing
these technical, ethical, and regulatory challenges
is essential to ensure its equitable, trustworthy, and
clinically sound integration into ophthalmic practice
[33-36].

4, Artificial intelligence approaches to
evaluate prognostication, treatment
response and survival in Diabetic
Glaucoma

Diabetic glaucoma represents a significant intersection
of two chronic, vision-threatening conditions:
diabetes mellitus and glaucoma. Characterized by
elevated intraocular pressure, retinal ischemia, and
progressive optic nerve damage, diabetic glaucoma
often poses diagnostic and prognostic challenges due
to its complex and multifactorial pathophysiology.
Traditional clinical approaches to assess disease
progression, treatment response, and long-term
outcomes rely heavily on periodic imaging, visual field
testing, and clinician expertise—methods that can be
limited in predictive accuracy and scalability.

Al, especially ML and DL, has performed
impressively in the past few years with potential to
transform the management of glaucoma. By analyzing
a vast amount of data from images, electronic
health records (EHR), and clinical notes, Al models
can approximate surgical specifics, evaluate the
effectiveness of therapy, predict the pathological
progression, and personalize individualized care.
These technologies include CNNs for optic disc imaging
and a survival model such as DeepSurv and random
survival forests (RSF), which offer early intervention
and improved clinical decision-making. Al may be able
to integrate multiple clinical variables to augment
prognostication and facilitate long-term visual
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preservation particularly in the setting of diabetic
glaucoma for which systemic metabolic influences the
ocular outcomes [37].

4.1. Prognostication & Progression Prediction

Al models are increasingly used to predict the
progression of glaucoma, including the likelihood and
timing of glaucoma surgery. For example, survival
models such as DeepSurv, RSF, and Gradient Boosting
Survival (GBS) applied to structured EHR data achieved
strong predictive performance—DeepSurv reached a
C-index of ~0.775 and mean AUC ~0.80 in forecasting
progression to surgery. Important predictive features
included age, baseline visual acuity, intraocular
pressure, and use of multiple glaucoma medications,
which aligned with clinician judgment [38]. Another
study combined structured EHR features with free-text
clinical notes via deep learning and NLP techniques.
The combined model achieved an AUC of ~0.899 and
F1 score ~0.757 in predicting near-term progression,
outperforming models using only structured data
or only text [39]. Key predictors included 10P, visual
acuity, medication regimens, and terms from clinical
notes indicating urgency or risk of surgery.

4.2, Treatment Response & Surgical Outcome
Prediction

Machine learning and deep learning models have
also been applied to predict treatment and surgical
outcomes in glaucoma. At Stanford, ML models
(including Random Forests and CNNs) were used
to predict surgical failure—defined by inadequate
IOP reduction, increased medication use, or need
for revision. These achieved accuracy of ~75% and
AUROC up to ~76%, with better performance for
[IOP outcomes (AUROC ~86%) than for medication
changes (~70%). These predictive models can inform
personalized surgical planning and patient counselling
[40].

4.3. Predicting Diabetic Glaucoma Changes

Tiwari et al.

Earlier neural network research specifically targeted
ocular changes in patients with both diabetes
and glaucoma. Simple feedforward and recurrent
networks—for instance Jordan-Elman neural
networks—were trained on clinical parameters such
as cup-to-disc ratio, HbAlc, intraocular pressure,
and visual field mean deviation. These models
predicted progression with up to 95% accuracy for
direct modelling and +15% confidence intervals for
predicting visual field decline [41] (Table 6).

4.4.Imaging-Based Prognostication

Beyond EHR data, Al-driven imaging approaches are
being explored to predict progression or treatment
response. Deep learning models analyses of optic
nerve head focal notching and RNFL thinning via
fundus segmentation achieve glaucoma detection
accuracy of over 90%. While not explicitly focused
on diabetic glaucoma, similar approaches could be
adapted to quantify and predict progression in diabetic
populations [42].

4.5. Explainability & Trust

Al survival models traditionally have lower
interpretability. Yet, techniques like Shapley values
and cumulative hazard curve visualizations help model
transparency. Studies highlight explainable features
such as age, visual acuity, and medication usage—
mirroring clinicians’ risk factors and boosting trust
in Al predictions. Similarly, models incorporating
clinical text used explainability tools like Grad-CAM
to emphasize predictive note phrases such as "urgent
referral [43].

5.The Bionic Eye: Future Vision Restoration

The bionic eye, or visual prosthesis, is a state-of-the-
art innovation designed to restore functional vision
in people affected by advanced degenerative retinal
disorders. Conditions such as retinitis pigmentosa (RP)
and age-related macular degeneration (AMD) involve

Table 6. Al Methodologies and Outcomes in Diabetic Glaucoma Prognostication

Task

Al Methodology

Key Outcomes

Progression to Surgery
Near-term Progression Risk

Predicting Surgical Failure

Diabetic Glaucoma Progression
models

Imaging-based Prognosis

DeepSurv, RSF, GBS survival models
Structured + NLP deep learning models

Random Forest, CNN prediction models

Feedforward/Jordan-Elman ANN

CNNs for optic cup—disc segmentation

C-index ~0.775, AUC ~0.80
AUC ~0.899, F1 ~0.757
Accuracy ~75%, AUROC up to 86% for IOP
outcomes
Up to ~95% accuracy in progression
prediction
Glaucoma detection AUC >90%
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the gradual loss of photoreceptors—rods and cones—
ultimately causing severe vision loss and blindness.
Crucially, while these diseases damage photoreceptors,
the inner retinal neurons, optic nerve, and visual
cortex may remain anatomically intact, providing a
foundation for artificial stimulation. By utilizing this
residual neural circuitry, bionic eye systems generate
artificial visual signals, allowing patients to perceive
light patterns and regain partial visual function [45].

The working principle of the bionic eye begins with
visual scene capture using an external imaging device,
typically a miniature video camera attached to glasses
worn by the patient. The images are processed in real
time by a portable processor, which converts them
into electrical stimulation patterns. These signals
are then transmitted wirelessly to an implantable
microelectrode array surgically positioned on the
retina (epiretinal or subretinal) or, in some designs,
directly within the visual cortex. The electrodes
stimulate remaining functional retinal ganglion cells or,
alternatively, higher visual centers such as the lateral
geniculate nucleus or primary visual cortex [46, 47].
The brain interprets this stimulation as phosphenes—
flashes or spots of light—which the patient
progressively learns to decode into rudimentary visual
information.

Several types of bionic eye systems have been
developed and tested in clinical settings. Among the
most well-known is the Argus Il Retinal Prosthesis
System (Second Sight Medical Products), which uses
an epiretinal implant with 60 electrodes and has
received regulatory approval in Europe and the United
States. The PRIMA system (Pixium Vision) represents
a subretinal approach, placing a photovoltaic chip
beneath the retina to convert pulsed near-infrared
light into electrical currents that stimulate bipolar
cells. Meanwhile, the Gennaris Bionic Vision System
(developed by Bionic Vision Technologies in Australia)
explores a cortical implant strategy for patients who
lack a functional retina altogether. Each of these
systems offers unique advantages and challenges.
Retinal implants are more natural in preserving the
visual pathway but require a functional optic nerve,
while cortical systems can bypass retinal damage but
demand more complex neurosurgical procedures and
pose greater risks [48-50].

While current-generation bionic eye devices do not
restore vision to normal levels, they can significantly
improve spatial orientation, object localization,
and navigation for individuals who are otherwise
completely blind. Patients using these systems
often describe perceiving outlines of objects, high-
contrast edges, or motion, which aids in mobility
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and independence. However, several limitations
persist. The resolution of current prosthetic vision is
low, typically limited to coarse pixel arrays, and the
learning curve for interpreting artificial visual stimuli
can be long and demanding. Power consumption,
biocompatibility, long-term implant stability, and
individualized adaptation to neural variability remain
active areas of research [51].

To overcome these limitations, recent efforts focus
on integrating ML and Al into the visual processing
units of bionic systems. Al algorithms can optimize
image preprocessing, enhance contrast, detect key
objects in the visual field, and translate scenes into
simplified, interpretable visual patterns tailored to
each user’s perceptual capacity. Moreover, advances in
neuromorphic engineering—which mimics biological
neural processing—promise more efficient, low-
latency, and energy-saving solutions for real-time
visual information encoding. Future iterations may
also incorporate closed-loop feedback, where real-time
cortical responses inform adjustments to stimulation
parameters for more natural visual perception [52].

In conclusion, the bionic eye offers transformative
potential for patients with irreversible retinal
degeneration, providing a viable pathway to partial
visual restoration in cases where conventional
therapies fail. As this field evolves, the convergence of
neural interface technology, Al-driven processing, and
precision medicine will play a pivotal role in enhancing
the effectiveness, personalization, and accessibility of
visual prosthetic systems. Continued interdisciplinary
collaboration between ophthalmology, neuroscience,
bioengineering, and computer science is essential to
bring these innovations from experimental labs to
widespread clinical reality [53].

5.1. Bionic Eye Works

In glaucoma—a neurodegenerative eye disease
characterized by the progressive loss RGCs and
damage to the optic nerve—vision loss is typically
irreversible, particularly in advanced stages where
significant portions of the optic nerve and associated
RGCs have degenerated. In such cases, conventional
treatments aimed at lowering IOP are no longer
effective in restoring lost vision [54]. The advent of
bionic eye technologies offers a potential breakthrough
for patients with end-stage glaucoma by bypassing the
damaged visual pathway and directly stimulating the
remaining functional components of the visual system
to restore a rudimentary form of sight. The bionic
eye system operates through a multi-step process
designed to mimic the natural visual pathway. First,
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visual input capture is achieved using external glasses
fitted with a camera that records real-time video of the
environment. This input is transmitted to an external
signal processing unit, which processes the visual
scene by extracting key features such as shapes, edges,
and motion. The unit then converts this information
into encoded electrical signals optimized for neural
stimulation.

In the electrical stimulation stage, these signals are
wirelessly transmitted to an implanted microelectrode
array (MEA), which is strategically placed either on
the retinal surface (epiretinal), beneath the retina
(subretinal), or in some advanced designs, directly into
the visual cortex. In glaucoma, where photoreceptors
may still be intact but RGCs are compromised, the
approach typically focuses on stimulating surviving
RGCs or bypassing them entirely by targeting the visual
cortex [55-57]. Once implanted, the MEA delivers
precise electrical pulses to activate the remaining RGCs
or cortical neurons. This neuron activation mimics
the natural signalling that would have been generated
by healthy photoreceptor-RGC interactions. These
artificial signals are then transmitted via the intact
portions of the optic nerve—if still functional—or
directly to the brain in cortical systems.

Finally, in the perception formation phase, the brain
interprets these electrical signals as visual stimuli,
resulting in the perception of phosphenes—flashes or
patterns of light. Though this does not restore normal
vision, it enables users to recognize shapes, perceive
movement, and navigate environments with greater
autonomy [58]. For patients with advanced glaucoma
and extensive optic nerve damage, cortical bionic
systems may offer the most promise, as they bypass
the eye entirely. While still experimental and limited in
resolution, bionic eye technologies hold great potential
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for restoring functional vision in glaucoma patients
with otherwise untreatable blindness (Table 7).

Future advancements in bionic eye technology,
particularly for glaucoma patients who suffer from
irreversible vision loss due to RGC or optic nerve
degeneration, will depend on overcoming several key
engineering and biomedical challenges. A primary
focus is on improving visual resolution, which remains
limited in current systems. Most bionic eyes can only
produce low-resolution images consisting of coarse
shapes or flashes of light (phosphenes), due to the
limited number of electrodes in the MEA. Enhancing
electrode density while maintaining spatial selectivity
is essential for delivering more precise and localized
electrical stimulation. This would enable users to
perceive more detailed visual scenes, better recognize
objects, and navigate complex environments with
greater independence. However, increasing electrode
count must be balanced with power consumption,
thermal safety, and signal cross-talk, which pose
engineering constraints [59].

Another promising direction is the development
of closed-loop stimulation systems. In current open-
loop designs, the stimulation patterns are pre-
programmed and do not adjust based on user feedback
or neural response. In contrast, closed-loop systems
aim to incorporate real-time feedback from the brain
or remaining visual pathways, allowing the device
to modulate stimulation parameters dynamically.
Such adaptive systems would significantly enhance
visual function by personalizing stimulation patterns
based on the patient’s neural response, fatigue levels,
or environmental context [60]. Implementing this
requires integration of neural recording capabilities
into the implant, as well as sophisticated signal
processing algorithms capable of interpreting and

Table 7. Types of Visual Prostheses: Mechanisms and Notable Devices

Type Implant Location

How It Works Notable Devices or Trials

On the inner surface of

Retinal - Epiretinal the retina (above RGCs)

Beneath photoreceptors,

Retinal — Subretinal .
near bipolar cells

Between choroid and

Suprachoroidal
sclera

Direct stimulation of the

Cortical .
visual cortex

External glasses capture images;
microelectrodes stimulate RGCs

Photodiode chip converts captured
light into electrical signals,
stimulating deeper retinal layers.

Electrode array placed less invasively;
signals delivered to RGC via external

Bypasses eye and optic nerve;
ideal when optic pathways are

Argus |l system (~60electrode

directly. array)

Alpha IMS, PRIMA
(photovoltaic implants)

Experimental devices in

clinical trials
camera.

Orion (Second Sight), Debelle’

. s cortical implant
nonfunctional. P
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responding to complex brain activity.

Biocompatibility and long-term stability of
implanted components are also critical engineering
concerns. The materials used in electrode arrays
and implant casings must minimize the risk of
inflammation, fibrosis, or rejection while maintaining
consistent performance over many years. Advances
in biomaterials and coating technologies can reduce
immune responses and enhance electrical conductivity.
Furthermore, ensuring mechanical durability in the
dynamic environment of the eye or brain is essential to
prevent device degradation or malfunction [61].

Thermal safety is another consideration, especially
as devices become more complex and power-intensive.
Excessive heat generation from continuous stimulation
or wireless data transfer could damage surrounding
neural tissue. Therefore, thermal management
strategies such as passive heat dissipation structures
and efficient circuitry are necessary.

Future of bionic eyes in glaucoma management
lies in achieving higher resolution, real-time adaptive
stimulation, and long-term biocompatibility and safety.
These innovations will be crucial for transitioning
bionic vision from basic light perception to meaningful,
functional sight for patients with end-stage glaucoma.

5.2. Types of Bionic Eye Systems

Bionic eye systems are emerging as a revolutionary
approach to restoring some degree of visual function in
patients with end-stage glaucoma, where conventional
treatments are no longer effective due to irreversible
loss of RGCs and optic nerve damage. A variety of
bionic eye systems—targeting different parts of
the visual pathway—have been developed or are in
advanced stages of research to address these complex
needs. Retinal implants, such as the Argus Il (by
Second Sight, now under Cortigent), are designed to sit
epileptically, on top of the retina, above the remaining
RGCs. This system was approved in the EU in 2011
and the U.S. in 2013 for use in patients, with over 350
individuals implanted. Users reported improved light
perception, motion detection, and basic navigation
abilities, with about 60% showing significant visual
improvements compared to only 5% when the device
was turned off. However, the system offered limited
resolution—only 60 electrodes producing roughly
60 phosphene points of light—and a relatively high
adverse event rate (26%). Production ceased in
2020, but legacy support continues under Cortigent.
While Argus II has not been approved specifically for
glaucoma, it provides a foundational technology for
future retinal prosthetics in glaucoma patients with
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partial RGC survival [62].

The PRIMA implant by Pixium Vision represents
another class of retinal prosthetics—subretinal
implants. These devices are placed beneath the
photoreceptors and use photovoltaic stimulation
powered by infrared light projected from smart
glasses. In a clinical trial involving patients with AMD,
a 2 mm chip improved visual acuity from around
20/450 to 20/160 in most participants, with some
reaching 20/63 when using magnification features.
PRIMA’s ability to provide “form vision”—recognition
of shapes and patterns—rather than just basic light
flashes, represents a significant advancement and
holds potential for glaucoma cases where outer retinal
layers remain functional.

For advanced glaucoma with significant optic
nerve damage, optic nerve and cortical implants
are of greater interest. The Bionic Vision Australia
consortium and its commercial spin-off, Bionic Vision
Technologies, have explored suprachoroidal and
epiretinal implants targeting residual optic nerve
pathways. Their "Diamond Eye" system, incorporating
biocompatible diamond electrodes, aims to reduce
power consumption and improve stability. Initial
prototypes have been tested in seven patients since
2012, with ongoing clinical evaluations for broader
deployment [63]. In cases where both the retina and
optic nerve are severely compromised—typical in
late-stage glaucoma—cortical implants offer the most
direct route to visual restoration. The Monash Vision
Group's Gennaris system places an implant on the
visual cortex, bypassing the eye entirely. Supported
by Australia’s MRFF “Cortical Frontiers” program,
this technology is preparing for first-in-human trials.
It targets completely blind individuals, including
those with glaucoma, by stimulating the brain's visual
processing centres directly.

Similarly, Neural ink’s Blind sight project focuses
on a cortical neural interface. It has received FDA
Breakthrough Device designation and aims to begin
human trials by late 2025. This system aspires to
restore basic vision in totally blind individuals,
including those with glaucoma, although current
technology still produces grainy, low-resolution
images. Challenges such as precise cortical mapping,
long-term implant stability, and safe surgical
procedures remain significant [64] (Table 8). While
bionic eye systems were initially developed for retinal
degenerative diseases, innovations in retinal, optic
nerve, and cortical prostheses offer promising new
avenues for restoring functional vision in glaucoma
patients. These technologies, although still in
developmental stages for glaucoma-specific use, mark
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Table 8. Comparison of Different Bionic Eye Technologies
Implant Type Systems Target Patients Vision Quality Stage

. N RP with intact optic Light/motion, basic shapes Commercial (Argus
R | I A 1] . .

etinal (epiretinal) reus nerve (60 electrodes) Il discontinued)

. . Dry AMD with preserved Form vision, improved . .
Retinal (subretinal) PRIMA inner retina acuity (~20/160) Clinical trials
Suprachoroidal BVA/BVT prototypes RP, AMD Early-stage; pending trials Pre-commercial

Monash Vision

Cortical (surface) Y e —,

Neural ink
“Blindsight”

Cortical
(intracortical)

Optic nerve/retina loss,
glaucoma

Complete blindness

clinical

Preclinical >
human trials ahead

Undetermined; upcoming
trials

Human trials

Low resolution; early data
W ! y expected late 2025

a transformative shift in how vision loss.

5.3. Integration with Al and Computer Vision

Integration of Al and computer vision is rapidly
advancing the functionality of bionic eye systems,
especially in enhancing visual perception for glaucoma
patients with profound vision loss. Al algorithms can
pre-process visual input captured by the external
camera, identifying and emphasizing critical features
such as edges, contrast, object outlines, and motion—
elements essential for spatial awareness and
navigation. This data is then translated into optimized
electrical stimulation patterns, improving the clarity
and relevance of the visual signals delivered to the
brain. Through computer vision, dynamic scene
analysis (e.g., object recognition, facial detection,
obstacle avoidance) can be incorporated, allowing the
system to prioritize important stimuli in real-time
[65]. Moreover, Al enables user-specific adaptation,
learning from behavioural feedback to refine image
simplification and stimulus delivery. In combination,
these innovations can transform crude phosphene-
based perception into functionally meaningful vision,
significantly improving independence and quality of
life for individuals with end-stage glaucoma (Table 9).

6. Challenges and Future Directions in Al-
Enhanced Prosthetic Vision for Glaucoma

Even some of the best performing dependent Al-based
prosthetic vision systems for glaucoma patients are not
without limitations which restrict their efficacy as well
as utility. The main barrier is the low-spatial resolution
of currently available implants, which highly limits
the information that can be transferred. Moreover, the
low electrode number still limits the level of detail
and clarity of the images perceived, and users still

struggle to interpret complex environments properly
even if processed with state-of-the-art Al-based
preprocessing and object recognition algorithms.
Real-world conditions are also highly varying, which
further complicates the problem. Variations in lighting,
occlusion, and messy background can degrade the
efficacy of Al-based algorithms to accurately detect
and classify objects. Even though the use of an
adaptive pre-processing suppresses these effects to
some extent, the development of robust models that
can be used as is across a wide range of situations is a
continuous research goal.

This idea of personalization is also important,
and incredibly messy. Al systems will need to learn
and adapt continually to the particular preferences,
context, and operational objectives of specific users. A
sub problem to achieve this and is developing efficient
feedback and reinforcement learning which can
customize the recognition output without increasing
the user fatigue or the computational overhead.
Ethical considerations are a major concern in the
development of such systems, as they often use cloud
computing and data sharing to provide model updates
and improvement. Maintaining system responsiveness
while handling sensitive visual information securely
and privately is a difficult task both technically and
legally [66, 67].

Where we're headed Vision into the future is
increasingly focused on enhancing implant resolution
via higher-density electrode arrays and better spatial
selectivity to provide even richer visual inputs for Al
to work with. Progress in neuromorphic computing
and edge Al could allow for real-time processing on
the device, decreasing latency and reliance on cloud
computing. Furthermore, multimodal integration, for
instance, integrating Al enhanced prosthetic vision
with auditory or haptic perceptions, may also enhance
the perception and interaction of users.
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Table 9. Comparative Overview of Al Techniques for Diabetic Glaucoma Detection and the Emerging Role of Bionic Eye

Technologies

. . Examples/ e Future
Section Key Aspect Details Models Advantages Limitations Directions
Combination
of diabetic Understanding
retinopathy the overlap Often
' ' o (DR) and |n'1prove'S asymptomatic in personalized
Diabetic Definition & glaucomatous diagnosis early stages - .
. . medicine using
Glaucoma Pathophysiology = damage due - More - Requires .
. Al biomarkers
to elevated complex multimodal
IOP and disease imaging
microvascular management
changes
Vlsua! field . Humphrey Cllrucally Expensive Al-assisted
. . . testing, Visual Field validated S . .
Diagnostic Traditional . Subjective image reading
. OCT, fundus Analyzer High accuracy . .
Techniques methods T interpretation for mass
photography, - OCT in clinical .
. - Not scalable screening
tonometry Spectralis hands
Algorithms Good for small enF?r?g;rr?n
Al Approaches Machine trained on SVM, Random . & & Hybrid ML + DL
. ) . . to medium needed
for Detection Learning (ML) imaging & Forest, KNN models
. datasets Less robust for
clinical data .
noisy data
End-to-end .
learning B EEBLIRTEy Needs large Explainable
Deep Learning . CNNs, ResNet, Feature
from images . datasets Al Federated
(DL) VGG16, U-Net extraction .
(fundus, OCT, . Black-box nature learning
automatic
etc.)
. i B i .
. . Combine OCT, Multistream etter High da’Fa Multimodal
Multimodal Integration of CNNs, accuracy complexity
. g fundus, and . . data
Imaging + Al modalities .. Attention- Reduces false  Inter-modality L
clinical data . o harmonization
based models positives variation
Need for
. DRIONS-DB, Benchmarking . . . . . .
Al Tools & Common P?:r“fr:;t;se/ts RIM-ONE, possible lelltaejcglna::m I‘iljfs:qca-
Datasets datasets used L & REFUGE, Enables & s & e
validation o specific data specific
APTOS reproducibility
datasets
- . '.M to.o.ls used IDx-DR, Google Scalable Regulatory and Real-world
Clinical Deployment in in clinics and . Remote : R
Implementation ractice screenin DeepMind, screenin ethical hurdles validation
P P & EyeArt . & Data bias issues studies
programs possible
Ethical and Bias, Ensuring GDPR, HIPAA, Patient data Regulation Adaptive Al
Regulatory interpretability, fairness and FDA-AI protection lagging behind governance
Considerations privacy patient safety guidelines - Clinical trust tech frameworks
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Restore vision Vision Limited .
. . Argus I, . . Integration
- via retinal L restoration resolution .
Bionic Eye . . PRIMA Bionic . . with Al for
. Overview & goal implants . Useful in - Requires
Technologies . Eye, Gennaris closed-loop
or cortical advanced surgery
. System . feedback
interfaces stages - High cost
. . Real-time Power Brain-Al
Adaptive Neuromorphic . . .
. . adaptation consumption interfaces
AP processing chips, DL- . .
Al in Bionic Eye Personalized Real-time Energy-
& scene based scene . . .
. . image processing efficient
recognition analysis . .
reconstruction constraints processors
. . Detection can't
Non-invasive Early . Convergence:
. . . . . restore vision .
Comparative Al Detection vs  early detection intervention vs Bionics not Smart implants
Prospects Vs invasive quality-of-life . that detect &
. suitable for
restoration enhancement adapt
early-stage
Al-enhanced Personalized, . .
L . Digital twins
Integration & bionic vision, accessible, Interdisciplinar Al-bionic
Future Trends & . cloud-based and smart P ¥
Innovation . . . challenges synergy
diagnostics, ophthalmic
. . platforms
bio-Al fusion care

Ultimately, overcoming these challenges requires
interdisciplinary collaboration among engineers,
clinicians, Al researchers, and patients. Continued
innovation will pave the way for more natural,
functional, and personalized prosthetic vision systems,
dramatically improving quality of life for glaucoma
patients with profound vision loss [68-71] (Table 10).

6.1. Data and Regulatory Challenges in Al-Driven
Glaucoma Diagnosis and Neuroprosthetics

The advancement of robust and clinically reliable Al
systems in glaucoma diagnosis and neuroprosthetics
devices, such as visual prostheses, critically depends
on access to large, diverse, and well-annotated
datasets. These datasets must encompass a wide
range of glaucoma severity, demographic diversity,
imaging modalities, and clinical contexts to ensure
Al models generalize well across different patient
populations and real-world environments. In
glaucoma care, publicly available datasets like RIM-
ONE, ORIGA, and DRIONS-DB have accelerated Al
development by providing retinal images annotated
with optic nerve head changes, RNFL thinning, and
other glaucomatous markers. However, these datasets
often lack comprehensive diversity in ethnicity, disease
stages, or multimodal imaging inputs such as OCT
combined with fundus photography. These restrictions
could affect the medical reliability of Al algorithms in

underrepresented groups through introducing bias and
reducing their resilience [72]. Also, there is a serious
absence of standardized datasets that capture dynamic
visual environments, patient-device interactions, and
implant-specific constraints in the field of glaucoma
neuroproteins, where Al aids in real-time image
preprocessing and neural stimulation to restore visual
perception [73]. The creation and evaluation of Al
models suited to the unique challenges of glaucoma-
related vision loss and prosthetic vision restoration is
restricted by this deficiency. Adoption of uniform label
guidelines for glaucoma characteristics, cooperative
data-sharing activities across institutions and regions,
and adherence to ethical frameworks protecting
patient privacy and data security are all necessary to
close these data gaps. By improving dataset diversity
and quality, such initiatives would allow for more
precise, broadly applicable Al systems [74, 75].

At the same time, a major change in regulatory
strategies is required to include Al into glaucoma
diagnoses and neuroprosthetic devices. Al models
that are constantly changing due to software
upgrades and learning are difficult for traditional
regulatory frameworks, which were created for
static medical devices. Because Al technologies are
iterative, regulatory bodies such as the European
Medicines Agency (EMA) and the US Food and Drug
Administration (FDA) are creating adaptive regulatory
procedures [76]. Regulatory surveillance of glaucoma
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Table 10. Comprehensive Overview of Al-Based Strategies for Early Detection of Diabetic Glaucoma and Technological

Advances Toward Bionic Eye Integration

. Implications TR Future
Section Aspect Det?"e.d Examptles/ for Diabetic it Research
Description Studies Challenges
Glaucoma Prospects
A complex
interaction
between diabetic
retinopathy Highlights the .
(vascular Late detection e
. need for early Identification
. Pathophysiology = damage due to . due to subtle
Disease . . . multimodal of shared
of Diabetic hyperglycemia) - N/A . symptoms and .
Background screening due . biomarkers for
Glaucoma and glaucomatous . overlapping .
. to overlapping . Al targeting.
optic neuropathy . . presentations.
disease profiles.
(elevated
intraocular pressure
and retinal ganglion
cell death).
Use Zi;r;’;rj\;cular Subjective
testing, fundus . Still considered mterpret'atlon, Al .
. . OCT Spectralis costly equipment, augmentation
. . . Traditional examination, OCT, . the gold ..
Clinical Diagnosis . . . . Humphrey Visual . and limited for mass
Diagnostic Tools  and visual field . standard in et .
. Field Analyzer .. . accessibility in  screening and
analysis to detect clinical settings. . ;
rural/low-income automation.
glaucomatous
areas.
changes.
-i ive, 2D -
N.on |r.1va5|ve, Easily integrated Lacks depth .
Imagin imaging of the with Al image information Integration
& .g. . Retinal Fundus  retina useful for ~ APTOS Dataset - g \ ’ with OCT and
Modalities in Imagin detecting optic DRIONS-DB classifiers for can't capture depth-learnin
Detection ging . g P automated  subtle nerve fiber P . g
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Provi D :
Optical cro;()s\-llsiiiiinal Highly sensitive DRI i1l
P . REFUGE ghly Expensive, limited using
Coherence retinal images for for early I .
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Tomography measuring RNFL glaucomatous . . -
. . RIM-ONE diabetic glaucoma. to improve
(OCT) thickness and optic changes.
. . datasets.
nerve integrity.
Supervised learning Transition
techniques using Canyield good Manual feature to semi-
. . . Random Forests, . . .
Al Methodologies Machine hand-engineered . accuracy on  engineering limits  supervised
. ’ . SVMs applied on - .
in Early Detection Learning (ML) features (e.g., cup- small/moderate  scalability and ML using
. ) fundus/OCT data L
to-disc ratio, vessel datasets. generalizability. unlabeled
tortuosity). datasets.
ISV SRS Automatically  Requires large, Explainable
that learn CNNs (e.g., . .
. . . detects minute diverse datasets. Al (XAl)
Deep Learning hierarchical ResNet50, . " "
pathological Black box frameworks to
(DL) features from large VGG16, . . .
changes with nature limits improve trust

annotated datasets DenseNet121)

(fundus/OCT). high accuracy.
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Diabetic-Specific
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Bionic Eye:
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Hybrid &
Multimodal Al
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models.
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to restore partial

vision via electrical
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neural stimulation
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enhanced spatial
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detection and
prevention, while
bionic systems
aim at vision
restoration.
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Al development,
and ethical
deployment of
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Vision of integrating
Al-driven diagnostic

tools with smart

bionic interfaces

that adapt in real
time.

and fundus data
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accuracy and
reduces false

positives in
complex cases.

Attention-

combining OCT
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Lack of trained on
specificity general
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REFUGE, etc. data may
underperform.
Retinal Reduced
hemorrhages e
. specificity in Al
vs optic nerve .
predictions.
changes
Offers hope

Argus Il (Second -

Sight) .
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vision loss from
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glaucoma or DR.

Al enables
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Gennaris Cortex .
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System
. to user
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vision chips

and dynamic
scenes.
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. clinical
Screening tools

vs implanted
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prosthetics .
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spectrum.
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Al MedTech .p
reculation adoption and
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"Closed-loop" prevention and
vision systems restoration
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Data
harmonization
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Model
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surgery.
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processing
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management prevent disease; Al
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vision.

Technology access
disparities; Al
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High development
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Development
of Al fusion
models for

real-time
diagnosis.

Creation of
large-scale,
diabetic-
glaucoma-
specific
datasets.

Use of multi-
task learning
to identify
overlapping
disease cues.

Combining Al
to optimize
image
translation
into
stimulation
patterns.

Use of low-
power Al
hardware

(e.g., edge Al,
neuromorphic
chips).

Unified
frameworks
where Al
guides bionic
function (e.g.,
adaptive
stimulation).

Community-
centered
dataset
building and
equitable
bionic eye
trials.

Digital twins,
real-time
brain-Al
interfaces,
personalized
visual
prosthetics.
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neuroprosthetics must guarantee their efficacy, safety,
and transparency, with a focus on explainability and
user-centered design. It has to cover cybersecurity
threats, strong data governance, and responsibility
for Al-driven choices that affect visual perception.
Additionally, long-term safety monitoring, means
of ongoing post-market review, and proof of Al
efficiency across a range of populations should all be
prerequisites for regulatory clearance. In summary,
rich and diversified data infrastructure coupled with
flexible regulatory environment will be required for
successful deployment of Al for glaucoma diagnosis
and neuroprosthetics. Ultimately, the approach will
lead to improved diagnosis, greater facilitation,
and smart prosthesis that can provide vision and
independence to glaucoma patients, all whilst
encouraging innovation and maintaining clinical trust
[77].

6.1.1. Importance of Large-Scale, Diverse, and Well-
Annotated Datasets for Al in Glaucoma Diagnosis
and Neuroprosthetics

High-quality large datasets that are diverse, well-
annotated, and clinically relevant are needed to
develop and refine Al systems for diagnosing glaucoma
and for neuroprosthetic devices (both prosthetic vision
and non-visual prosthetic devices). To reach for a
strong and generalizable performance, Al models have
to be trained on full variability dataset for glaucoma,
as glaucoma presents with clinically diverse course
in different patients, most with subtle structure and
functional changes [78].

Enormous datasets are necessary to enable training
of deep learning models that can identify complicated
patterns of glaucomatous optic neuropathy. These
datasets should represent a wide range of disease
severity from mild glaucoma with few clinical signs
to those with large losses of retinal ganglion cells and
visual field abnormalities. This spectrum allows Al
systems to recognize glaucoma in its earliest forms
(and thus as its most treatable stage) and perhaps
before an individual experiences irreversible vision
loss [79]. Moreover, longitudinal data can assist Al
models in predicting the development of disease and in
the planning of personalized therapeutic interventions.

Diversity is also key in the datasets. Age, race and
other demographics may play a significant role in
the prevalence and characteristics of glaucoma. For
example, certain subtypes of glaucoma are more
frequently found in certain types of people, such as
those of Asian or African descent. If applied in the
real-world clinical context, data that derivate from
an underrepresentation of these populations may
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lead to Al models that provide biased or less accurate
predictions. There is a requirement for datasets to
contain a mix of patient demographics, including
underrepresented races and age groups in order
to resolve such disparities and to ensure that Al
developments are unbiased and effective across the
spectrum [80]. Requisite for successful Al training and
validation in glaucoma management is high-quality
annotation. In order to detect small GON changes,
clinical images such as optic nerve head photos, OCT
RNFL thickness maps as well as VF test results had
to be adequately annotated. Al models are able to
distinguish between glaucomatous damage and normal
anatomic changes because of the accurate labelling of
features such as optic disc cupping, neuroretinal rim
thinning and localised RNFL irregularities. Similarly,
the ability of a model to relate structural damage to
functional loss would be enhanced by incorporating
brain recordings or patient functional measurements,
such as visual field sensitivity. Our multi-modal
annotation approach allows comprehensive Al
evaluations involving all structural and functional
information to enhance the diagnostic accuracy
[81]. Datasets for neuroprosthetics and prosthetic
vision for glaucoma patients with serious vision loss
must go beyond still photos to incorporate real-time
patient actions, brain stimulation the preferences,
and dynamic interactions with the surroundings. By
capturing this precise data, computerized platforms
can better restore functional vision by tailoring
stimulation patterns and responding to the user's
visual demands [82].

Finally, standardized data formats and ethical
frameworks for data sharing are essential to enable
collaboration across research institutions and
healthcare providers. Ensuring patient privacy and
compliance with regulations, while promoting open
access to diverse and well-annotated datasets, will
accelerate Al advancements in glaucoma diagnosis and
treatment [83].

The availability of large-scale, diverse, and
meticulously annotated datasets is vital for developing
Al systems that can effectively support early glaucoma
detection, monitor disease progression, and enhance
neuroprosthetics function—ultimately improving
patient outcomes in glaucoma care worldwide.

6.1.2. Evolving Regulatory Frameworks

The integration of Al into glaucoma diagnostic
tools and neuroprosthetics devices presents novel
regulatory challenges that traditional medical device
frameworks are ill-prepared to address. Unlike
conventional static devices, Al-driven systems used
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in glaucoma care—such as automated optic nerve
head analysis, RNFL segmentation, and bionic vision
prostheses—are often adaptive, capable of continuous
learning and updating post-deployment. This dynamic
capability, while enhancing clinical utility, complicates
regulatory oversight because it requires monitoring
not only the initial safety and efficacy but also the
evolving behaviour of the algorithms over time [84].

A primary concern in glaucoma management is
ensuring that Al algorithms maintain consistent
diagnostic accuracy across diverse patient populations,
including different ethnicities and stages of disease. As
glaucoma is often asymptomatic until advanced stages,
reliance on Al for early detection and monitoring
demands rigorous validation that includes variability
in optic nerve morphology, image quality, and
coexisting ocular conditions. Regulatory bodies, such
as the U.S. FDA, must therefore adopt flexible, risk-
based approval pathways that consider the unique
adaptive nature of these systems and their potential to
learn from new clinical data continuously [85].

Transparency and explainability of Al algorithms
are critical in glaucoma care, where clinical decisions
regarding treatment initiation or progression
monitoring hinge on Al-derived outputs. Regulatory

Action Obligation

Create obligations to reflect

regulation/ Update

Building form the bottom up

Map obligations to areas of business

Tiwari et al.

frameworks increasingly emphasize the need for
interpretable Al models, allowing ophthalmologists to
understand the rationale behind algorithmic decisions,
such as identifying suspicious optic disc changes or
RNFL thinning. Explainability promotes clinician
trust and facilitates auditability, which is essential for
patient safety and medico-legal accountability.

Data privacy and security are also paramount,
given the sensitive nature of patient ocular images,
electronic health records, and neuroprosthetics device
data streams. Compliance with regulations like the
HIPAA and the GDPR requires secure handling, storage,
and transmission of patient information used both for
training Al models and in real-time clinical use [86,
87].

Post-market surveillance mechanisms are essential
to detect performance drift, algorithmic bias, or
adverse events associated with Al-driven glaucoma
diagnostics and neuroprosthetics. Continuous
monitoring protocols must be established to evaluate
device performance in diverse clinical environments
and over extended timeframes, ensuring sustained
safety and efficacy. This necessitates new regulatory
strategies to approve software updates and retraining
cycles without compromising patient safety (Figure 4).

Assign, track,& implement obligations
across the organization

Create policies/ procedures & set up
controls

Monitor regulatory development & changes

Identify applicable requirements/ Obligations

Figure 4. Steps to Manage and Implement Regulatory Obligations
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The evolving landscape of Al in glaucoma
diagnostics and neuroprosthetics demands regulatory
frameworks that accommodate adaptive learning,
enforce transparency, safeguard patient data, and
ensure ongoing performance monitoring. Addressing
these challenges is crucial to responsibly translate
Al innovations into improved clinical outcomes for
glaucoma patients worldwide [88-91].

6.2. Affordability and Accessibility

Cost represents one of the biggest hurdles for the
broad use of modern glaucoma diagnostic and
neuroprosthetic equipment in resource-constrained
regions. These state-of-the-art technologies —
which include OCT, Al-aided imaging platforms, and
bionic eye systems — frequently require expensive
equipment, specialized maintenance and a trained
staff, making them beyond the reach of many health
care systems in poor countries or underdeveloped
rural areas. Economic constraints preclude the timely
identification and proper treatment of glaucoma
thereby people with a high risk of glaucoma present
late and continue their sight losing without stop [92,
93].

Creative solutions that blend scalable technology
deployment with financial sustainability are needed
to address this problem. By combining resources,
infrastructure, and knowledge from governments, non-
profits, academic institutions, and industry players,
public-private partnerships (PPPs) present a potential
option. By supporting programs for training, improving
distribution networks, and lowering the cost of
technology, such collaborations can make advanced
glaucoma care accessible to more people. PPPs, for
instance, can assist primary care clinics in using Al-
based screening technology, which can improve early
detection rates and decrease the need for expensive
specialist visits [94-97].

Another significant aspect of cost reduction is
scalable production. Through economies of scale, mass
manufacture of standardized, modular components—
like portable OCT devices or tiny fundus cameras—can
reduce unit costs. The viability of creating glaucoma
diagnostic instruments at costs appropriate for low-
income markets is further boosted by improvements in
inexpensive materials and manufacturing operations,
such as 3D printing and inexpensive electronics [98].
Furthermore, reach may be increased without a large
infrastructure investment through developing Al
algorithms that run effortlessly on low-cost hardware
like cellphones.

Combining cost-effective technology design with
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strong PPP frameworks is essential to overcoming
economic barriers and democratizing access to
glaucoma diagnostics and neuroprosthetics vision
restoration globally. Such efforts will help reduce
the global burden of glaucoma-related blindness by
enabling timely intervention and ongoing monitoring
in resource-limited environments [99].

6.3. Challenges and Future Perspectives

Notwithstanding the aforementioned developments,
there is a need to overcome several hurdles for
optimal application of Al in glaucoma management.
First, are large; diverse, and well- annotated datasets
targeted to glaucoma and other optic neuropathies.
Good quality data is important in training Al models
that generalise beyond the ‘white’ population
and in varying the presentation of disease by
ethnic group and comorbidity. In addition, ethical
aspects including patient privacy, data security, and
algorithmic transparency need to be continuously
addressed, with aim of generating trust and facilitating
responsible innovation. Regulatory paradigms will
need to be adjusted to address such adaptive artificial
intelligence while ensuring glaucoma diagnostic and
neuroprosthetic systems are very safe and effective
[100].

Lastly, equitable availability is still an issue.
Glaucoma is a disproportionately debilitating disease
for the underserved and low-resource communities,
in which advanced diagnostics and neuroprosthetic
rehabilitation are usually unavailable secondary
to cost and infrastructure. To overcome these
discrepancies, there is a clear need for collaboration
between scientists, clinicians, industry and policy
makers to develop scalable manufacturing, cost-
effective approaches and representative clinical trials
[101]. With Al in glaucoma care, the approach toward
glaucoma is expected to shift gears—from reactive
therapeutic intervention to proactive, personalized
attention that includes early detection, continuous
surveillance, and functional recovery. By providing
greater diagnostic accuracy, predictive risk scores, as
well as improved performance of neuroprosthetics Al
enables a more proactive response to the challenges
of vision loss for clinicians and patients alike. As
continued interdisciplinary teamwork, ethical
oversight, and focus on accessibility persist among Al-
driven technologies, hope remains for millions affected
by this blinding global disease, that glaucoma care will
be transformed [102-104].

7. Conclusion
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The leading cause of irreversible blindness is glaucoma
due to optic nerve injury and RGC loss. Although
clinical care has improved, early diagnosis is still
difficult because of the subtle presentation, coexistence
with other ocular diseases, and resource limitations
in many areas. Early detection is crucial to avoid
vision loss, but conventional tools like OCT, perimetry,
and IOP monitoring are typically inadequate,
particularly for patients with comorbidities (e.g.,
diabetes-retinopathy). Al brings an era-shifting
solution to glaucoma screen, monitor and personalize
management. Deep learning models, primarily CNNs,
are able to process complex imaging data combined
with clinical and demographic information, and they
achieved better sensitivity and specificity than human
experts in subtle changes in structure. Furthermore,
through longitudinal integrative health records
(including, among others, data from ophthalmic
telemedicine), Al can make early, risk-stratifying
predictions of disease course, including severe
vision loss, prompting tailored interventions. But
beyond diagnosis, Al enhances the long-term disease
management by automatically establishing standards,
reducing variability and spotting real-time trends for
personalized treatment adjustments. It also provides
medication adherence via life tracking, patient
reported outcomes and pretext alerts, increasing long-
term results and ultimately quality of life.

In severe stages of glaucoma in which there is blur
vision Al is important not only for visual rehabilitation
with the help of bionic eyes, but also brain-machine
interface. These implants apply electrical current to
viable retinal neurons or the visual cortex. Optimized
image preprocessing emphasizes important data in
the visual input such as edges and faces driven by
an Al and an adaptive algorithm tailors stimulation
parameters for improved handling. In addition, Al-
driven personalized neurofeedback enhances cortical
plasticity, and facilitates the interpretation of artificial
visual input. Although todays neuroprosthetics have
not reached fully restored sight, the combined effect
of the Al and prosthetic technologies promise useful
recovery of vision, independence and better life quality
for glaucoma patients.
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