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Abstract Background: Diabetic glaucoma is a serious eye disorder that can lead to permanent vision loss 
and is increasingly seen in individuals with long-term diabetes. With its rising global incidence, 
there is a critical need for early and reliable methods of detection to prevent severe complications. 
Objective: This study highlights the growing role of artificial intelligence (AI), especially deep learning 
technologies, in identifying diabetic glaucoma at an early stage. It also reviews progress in bionic 
eye technologies designed to help restore vision in affected individuals. Methods: Relevant scientific 
literature was reviewed by searching databases including PubMed, Taylor francis, ScienceDirect, MDPI, 
and Bentham. Articles published up to 2025 were considered, focusing on terms such as “diabetic 
glaucoma,” “retinal imaging,” “deep learning,” “AI in eye care,” “bionic eye,” and “neuroprosthetics.” 
Studies were selected based on their relevance to diagnostic innovations and vision-restoration 
technologies. Results: Recent developments in AI have enabled more accurate interpretation of 
retinal images, such as those from fundus cameras and optical coherence tomography (OCT), aiding 
in early detection of structural changes linked to glaucoma. At the same time, bionic eye systems—
based on neuroprosthetic implants—are showing promise in partially restoring vision in cases of 
severe visual impairment. Conclusion: Combining AI-powered diagnostics with emerging bionic eye 
technologies represents a major shift in managing diabetic glaucoma. These innovations have the 
potential to improve early detection and offer new options for visual rehabilitation, paving the way 
for more effective patient care in ophthalmology.
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1. Introduction

Glaucoma remains the second leading cause of 
irreversible blindness worldwide and is especially 
common among people with diabetes. Its development 

in diabetic patients is complex, largely driven by 
chronic high blood sugar, which damages the small 
blood vessels in the retina, raises intraocular pressure 
(IOP), and gradually leads to degeneration of the 
retinal nerve fiber layer (RNFL) and optic nerve. The 
two main forms seen in diabetes are primary open-
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angle glaucoma (POAG) and neovascular glaucoma 
(NVG), both of which present significant diagnostic 
challenges. Early changes in vision or retinal structure 
can be subtle and are often masked by overlapping 
damage from diabetic retinopathy [1].

Machine learning (ML) and deep learning (DL), two 
major advancements in artificial intelligence (AI), have 
become powerful tools for the early detection and 
diagnosis of diabetic glaucoma. These AI algorithms 
are trained on large datasets of OCT scans and retinal 
fundus images. As a result, they can now detect early 
signs of the disease with impressive accuracy, often 
outperforming human specialists in both sensitivity 
and consistency [2]. These technologies have the 
ability to raise patient outcomes and enable earlier 
leadership by recognizing glaucomatous damage 
before significantly higher vision loss starts.

At the same time as diagnostic innovations, 
therapeutic improvements like bionic eye technology 
are growing in popular. These devices use bioelectronic 
components and brain stimulation techniques to 
assist individuals with severe retinal degeneration 
repair functional vision. Bionic eyes, involving the new 
cortical implants and the Argus II retinal prosthesis, 
show especially promise for people with end-
stage glaucoma for whom traditional therapies are 
inadequate. These technologies, and that remain in the 
preclinical and clinical trial stages, represent a frontier 
in visual neuroproteins with ongoing research aimed 

at improving visual resolution, biocompatibility, and 
brain integration (Figure 1).

This review examines the at present state of bionic 
eye technologies and potential future orientations, 
additionally worrying the revolutionary role of AI in 
detection and monitoring. It also looks at the clinical 
and the pathophysiology features of diabetic glaucoma. 
together all of these developments mark a paradigm 
shift in the knowledge, diagnosis, and management of 
diabetic glaucoma, offering those who have it hope for 
early intervention and visual rehabilitation [3, 4].

2. Essential Perspective on AI Application 
in Imaging and Medicine

By enabling more rapid more precise, and more 
personalized diagnosis and treatment in fields as 
radiology and pathology, AI has changed medicine, 
particularly in the field of medical imaging. AI tool 
integration into clinical workflows has the possibility 
to significantly enhance healthcare efficiency and 
quality. AI fundamentally involves machines copying 
human brain processes like learning, reasoning, and 
decision-making. Machine learning and deep learning, 
in particular convolutional neural networks (CNNs), 
are crucial to evaluating complex medical images like 
retinal scans, MRIs, and X-rays. However, unlike human 
experts, AI models were able to "understand" these 

Figure 1. AI-Driven Workflow in Systems Biology and Precision Medicine
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pictures or medical ideas; rather they find statistical 
patterns and relationships in huge datasets that 
physicians would not see. AI is quite powerful for this 
data-driven strategy, but it also heavily relies on high-
quality and variety of the training data. AI technologies' 
accuracy and scalability rely substantially on large-
scale, well-labeled datasets that include multiple types 
of patient demographics, illness stages, and imaging 
techniques. 

Data biases can restrict model performance or even 
worsen healthcare inequities. Examples of these biases 
include the overrepresentation of specific clinical 
diseases or ethnicity. In addition, AI systems trained in 
a particular setting failed to operate as well in another 
due to variations in imaging tools and methods 
throughout institutions, highlighting the necessity 
for varied, representative datasets to create strong, 
dependable AI applications [5].

Because a lot of deep learning models serve as ‘black 
boxes’, which generate predictions without obvious 
explanations, transparency and interpretability 
still are big problems for medical AI. To trust and 
employ AI ideas properly in an area like medicine, 
where decisions can have life-or-death consequences, 
practitioners require interpretable outputs. To enhance 
physician adoption and regulatory monitoring, the 
explainable AI community is developing methods that 
elucidate how models reach their results—e.g., visual 
heatmaps that emphasize the image regions pertinent 
to a task. If AI is to really benefit health care, it must 
seamlessly integrate in today’s processes. Tools that 
clash with day-to-day work or require significant 
manual input often face adoption barriers. Rather than 
replacing human judgment, AI should ideally augment 
physicians’ capabilities by offering assistance with 
screening, organizing and decision support. Equally 
important is presenting AI output information in an 
intuitive clear way, allowing for rapid interpretation 
and medico-legal decisions. Today’s processes AI 
needs to easily fit into today’s processes if it is going 
to have a meaningful impact on healthcare. Tools that 
are disruptive, because they don’t work with existing 
tasks, or require a lot of manual input, have barriers 
to adoption. Instead of taking the place of human 
judgment, AI should ideally enhance physicians' ability 
by helping with screening, organizing, and decision 
support. Ensuring that the AI-generated data are 
simple, interpretable, and rational that allow quick 
answer and medical decisions is also important. Ethical 
and legal dilemmas are central when it comes to using 
AI in health. High privacy and security standards (e.g., 
GDPR and HIPAA) have to be respected to ensure 
the privacy of patients, as medical data are sensitive 

and confidential [6,7]. Furthermore, for the equitable 
provision of healthcare to diverse populations, 
developers should also work together to minimize bias 
in AI models. only based on (standard) static approval 
process, regulatory bodies are moving toward 
adapting their frameworks to manage particular 
issues related to AI. Among these challenges is that of 
necessary adaptive forms of oversight, which would 
need to accommodate the capability of AI systems to 
learn and improve even after deployment. Even as 
AI makes strides, it remains fundamentally broken. 
In order to maintain clinical safety and effectiveness, 
deployed models must be constantly monitored, 
acknowledged, and acted upon as warning signs to 
avoid false positives and negatives such as in rare and 
complex cases. To offer truly personalized medicine, 
it may be such as combining imaging data with 
genetic, clinical and lifestyle information.” Moreover, 
expanding the application of AI to cutting-edge fields 
such as neuroprosthetics and dynamic rehabilitation 
technologies, could further increase patient outcomes 
[8–10].

3. Approaches using artificial intelligence 
for detecting diabetic glaucoma

Millions of individuals worldwide are living with 
diabetes mellitus, a long-term metabolic condition 
that can lead to diabetic glaucoma, an unsafe eye 
consequence. This disorder is born out of the 
convergence of glaucoma and diabetic retinopathy, two 
main causes of vision loss. When high IOP, or vascular 
and metabolic changes carried on by diabetes damage 
the optic nerve, it can induce diabetic glaucoma, which, 
if unregulated, can cause slow irreversible visual 
impairment or blindness. Early diagnosis is important 
to prevent visual loss from diabetic glaucoma. 
But early stages of diabetic glaucoma can have no 
symptoms, or few ones that are easily overlooked; and 
commonalities of diabetic retinopathy (DR), such as 
retinal vascular abnormalities, could complicate the 
manifestation, and result in a difficult differentiation.

IOP measurement, funduscopic confirmation of 
optic nerve head (ONH), visual field testing to detect 
function loss, and imaging techniques such as OCT 
for visualization of structural changes in the retinal 
nerve fibre layer form part of conventional diagnostic 
algorithms. Although effective these techniques 
require special equipment and skilled interpretation. 
In addition, early diagnosis remains challenging in 
many regions with limited access to ocular specialists 
[11]. In this situation, AI is a promising tool that has 
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a chance to transform diabetic glaucoma screening. 
AI, specifically ML and DL, uses a big data of clinical 
information and images to detect patterns that 
potentially describe evidence of early glaucomatous 
damage. These methods can interpret complex 
imaging, such as fundus images, OCT scans, and visual 
field reports, frequently detecting abnormalities 
that are not visible to human observers [12]. By 
automating the process of image interpretation, AI 
has the potential to improve the accuracy of diagnosis, 
decrease interobserver variability, and pave the way 
for large scale screening, to include under-served 
patient populations.

More broadly, leveraging AI to diagnose diabetic 
glaucoma represents a trend in healthcare towards 
precision medicine-- where personalized risk 
assessment and treatment are enabled by data-driven 
solutions. Nonetheless, AI needs broad, high quality 
datasets and careful testing in clinical environment 
in order to realize those potential benefits. Ethical 
considerations such as algorithmic fairness, data 
privacy and patient privacy must also be considered 
to facilitate safe and equitable deployment. With 
these advancements in mind, the application of AI 
in diagnosing diabetic glaucoma holds significant 
promise for transforming early detection, enhancing 
patient care, and ultimately reducing the burden of 
blindness associated with this complex condition. 
However, it remains crucial to explore how these 
emerging computational approaches can reshape 
ocular management by addressing the underlying 
pathophysiology, diagnostic challenges, and the role of 
AI-based tools in diabetic glaucoma [13].

3.1. AI in Early Detection of Diabetic Glaucoma

3.1.1. Role of Retinal Imaging and OCT
Given that they afford precise identification of 
important ocular structures associated with disease 
processes, retinal imaging and OCT have entirely 
transformed the diagnosis and treatment of glaucoma. 
The ONH, RNFL, and macula are the primary affected 
structures in glaucoma. These structures are critical 
and early targets for the diagnosis of glaucomatous 
damage. High-resolution fundus photography provides 
clear optic disc images for healthcare providers to 
examine glaucomatous optic neuropathy signs, such as 
increased cup-to-disc ratio, a decrease in neuroretinal 
rim, and optic dischaemorrhages. OCT, on the other 
hand, allows quantitative, cross-sectional measures of 
the macular ganglion cell complex and RNFL thickness 
to be captured, which has helped investigators 
in identifying subclinical, early structural losses 

predetermining functional visual field constraints. This 
characteristic is of special benefit to the detection of 
normal-tension glaucoma and early glaucoma because 
the disease may be present with a normal intraocular 
pressure, a situation in which conventional screening 
methods are usually inadequate. OCT programs have 
implications in both diagnosis and monitoring the 
disease process given their precise quantification and 
reproducibility, allowing for more tailored and timely 
treatment approaches [14]. The implementation 
of retinal imaging and OCT in AI systems has also 
transformed the management of  glaucoma by 
improving the speed and accuracy of diagnosis. 
Artificial intelligence models trained on large retinal 
image datasets are able to detect glaucomatous 
damage earlier and more accurately as they can pick 
up subtlears and early structural changes outside the 
range of human perception (Figure 2). These emerging 
AI technologies show great promise for glaucoma 
screening, particularly in low-resource settings where 
access to specialized expertise is limited. Tools such 
as OCT and fundus photography play a vital role in 
this effort, as the integration of high-resolution retinal 
imaging with advanced computational analysis enables 
earlier diagnosis, more accurate risk assessment, and 
more cost-effective disease management—all with the 
ultimate goal of preserving vision.

3.1.2. Fundus Photography
Fundus photography is a fundamental imaging 
modality that has been widely used for the diagnosis 
and monitoring of glaucoma, for which it plays a 
crucial role by presenting vital visual information 
of the retina, ONH, and surrounding vasculature. By 
providing two-dimensional, colour images of the 
posterior pole, fundus photography allows clinicians 
to visualize and record the glaucomatous changes that 
occur within the optic disc and its surrounding retinal 
tissues. One of the diagnostic features of glaucoma that 
can be observed using fundus photography is optic 
disc cupping, which is defined as elevation of the cup-
to-disc ratio (CDR). This is accompanied by ongoing 
axonal degeneration of retinal ganglion cell axons and 
progressive thinning of the neocortical rim, which 
results in the central depression (or “cup”) of the 
optic nerve head expanding relative to the entire disc 
area. Longitudinal CDR changes are crucial to achieve 
progression determination of the disease [15].

Fundus photography also facilitates to identify 
neuroretina rim thinning that frequently proceeds 
functional vision field defect. As glaucoma progresses, 
the rim (protective nerve fibers around the edge) thins, 
the way it thins can suggest the kind and degree of 
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glaucoma. Another common finding among glaucoma 
patients is periphery atrophy, which presents as an 
area of Chori retinal atrophy and retinal pigment 
epithelium surrounding the optic nerve head on a 
fundus image [16]. It is associated with glaucomatous 
optic neuropathy (GON), and it has been associated 
with the stage and nature of the disease.

Due to its non-invasive nature, short capture time 
and low cost, it is an ideal tool for use in community 
wide comprehensive glaucoma screening programs, 
particularly in low-resource settings. The screening 
can even be carried out in mobile units or community 
clinics - thanks to fundus cameras, which are simpler 
and more available than more sophisticated imaging 
techniques such as optical OCT. This makes early 
detection very easy and is very important as one 
can then be tested early enough leading to early 
intervention, since glaucoma itself does not generally 
have symptoms until it is at advanced stages.

The Uvea and Fundus Photography Advances in 
digital imaging and telemedicine also have significantly 
extended the usefulness of fundus photography. 
The storage, transmission and analysis of digital 
images at remote locations allows teleophthalmology 
consultations and AI-based screening programmes. AI-

infrastructure that is capable of accurately detecting 
glaucomatous features such as peripapillary atrophy, 
rim thinning, and an elevated cup-to-disc ratio may be 
trained on a large number of fundus photographs. This 
might improve diagnostic consistency and decrease 
inter-operator difference in subjective clinical 
judgment [17].

The fundus photography is a helpful option in the 
diagnosis and treatment of glaucoma because it can 
contribute to a comprehensive visual assessment of 
the optic nerve head structure as well as changes of the 
peripapillary. Due to its ease of use, wide availability, 
and compatibility with modern AI technologies, fundus 
photography has become a critical tool in the global 
fight against glaucoma, enabling early detection and 
timely intervention before irreversible vision loss 
occurs.

3.1.3. OCT
OCT has gained popularity as an imaging modality 
helpful in the diagnosis and monitoring of glaucoma. 
It uses cross-sectional, high-resolution scans of the 
retina and optic nerve head that are acquired with 
near-infrared light waves. This non-invasive approach 
to assessing the key anatomical structures involved 
in glaucomatous optic neuropathy enables both 

Figure 2. AI-Driven Innovations in Glaucoma Diagnosis and Treatment
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rapid diagnosis and accurate monitoring of disease 
progression [18–20]. One of the most crucial factors 
seen with OCT in the evaluation of glaucoma is the 
thickness of the RNFL. Unmyelinated RGC axons 
converge at the optic nerve head to create RNFL, which 
sends visual data to the brain. Because the RNFL thins 
in glaucoma, these axons eventually vanish. OCT gives 
doctors a precise, repeatable measurement of the area 
around the optic disc, which enables them to identify 
any small alterations that could be occurring before 
obvious visual field loss. RNFL loss, a hallmark of 
glaucomatous damage, is a crucial biomarker for both 
detecting and tracking the course of the illness.

In addition to RNFL analysis, OCT assesses the 
Ganglion Cell Complex (GCC), which is made up of the 
inner plexiform layer, retinal ganglion cell (RGC) layer, 
and nerve fibre layer within the macula. Given that 
a sizable portion of RGCs is observed in the macular 
region, GCC analysis adds context to RNFL findings 
and can be especially helpful in the early detection of 
glaucoma. It has been demonstrated that alterations in 

GCC thickness, which contribute to ganglion cell death, 
correlate with functional impairment in glaucoma 
patients. 

OCT can also provide a detailed view of the optic 
nerve head's architecture, particularly the lamina 
cribrosa, a sieve-like connective tissue structure 
through which RGC axons leave the eye. Structural 
alterations in the lamina cribrosa, such as posterior 
displacement, thinning, or focal defects, are implicated 
in glaucomatous optic nerve injury and axonal damage 
(Table 1). Advanced OCT imaging techniques, including 
enhanced depth imaging (EDI) and swept-source 
OCT, enable better visualization and quantification of 
lamina cribrosa changes, providing insights into the 
biomechanical effects of elevated intraocular pressure 
and other pathogenic mechanisms [21].

The high-resolution, objective, and quantitative 
nature of OCT imaging enhances its clinical utility in 
glaucoma management. It allows early identification 
of structural damage before functional deficits 
become apparent on standard automated perimetry. 

Table 1.  OCT-Derived Quantitative Biomarkers in Glaucoma Diagnosis and Monitoring
OCT-Derived Quantitative 
Biomarker Description Clinical Utility

RNFL Thickness
Measurement of the thickness of 
the nerve fiber layer around the 

optic nerve head.

A widely used and popular parameter for glaucoma 
diagnosis and monitoring progression. Thinning is a 

key indicator of glaucomatous damage.

Macular GCC Thickness

Measures the combined thickness 
of the macular RNFL, ganglion cell 

layer (GCL), and inner plexiform 
layer (IPL).

Macular parameters can be superior for detecting 
early glaucoma, especially in cases of high myopia. 
A key biomarker due to the high concentration of 

retinal ganglion cells in the macula.

Ganglion Cell-Inner Plexiform 
Layer (GCIPL) Thickness

Measures the thickness of the 
GCL and IPL.

The GCIPL and inferior GCIPL have been shown 
to have the best diagnostic value for glaucoma. 

Asymmetry across the horizontal raphe is a good 
indicator of early glaucoma.

ONH Parameters
Includes measurements like 

cup volume, cup diameter, and 
neuroretinal rim thinning.

These parameters are able to differentiate between 
healthy and glaucomatous eyes, and are correlated 

with structural damage.

Lamina Cribrosa (LC)
A fenestrated collagenous 

structure that is the primary site 
of retinal ganglion cell injury.

Enhanced-depth imaging (EDI) OCT allows for in-
vivo examination of the LC, with changes in its 

morphology, deformation, and vascular perfusion 
serving as biomarkers.

Peripapillary Retinal Nerve 
Fiber Layer (cpRNFL)

Specific measurement of the 
circumpapillary RNFL.

Useful in the early detection of glaucoma, though 
measurements can be affected by individual 

variations like myopia.

Inner Plexiform Layer (IPL) 
Thickness

Measurement of the IPL 
thickness.

May serve as a biomarker to detect impairment of 
retinal ganglion cell function in early glaucoma, as 
morphological alterations in RGC dendrites might 

be seen in pre-perimetric and early glaucoma.
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Moreover, serial OCT scans enable precise monitoring 
of disease progression, facilitating timely adjustments 
in therapy to prevent irreversible vision loss. The 
integration of OCT data with AI and machine learning 
algorithms further augments glaucoma care by 
improving diagnostic accuracy and risk stratification. 
AI systems trained on large OCT datasets can detect 
subtle patterns of RNFL and GCC thinning, predict 
progression, and assist clinicians in decision-making, 
especially in challenging cases such as normal-tension 
glaucoma or atypical optic nerve appearances [22].

OCT provides a comprehensive, non-invasive 
means of assessing critical retinal and optic nerve 
structures affected in glaucoma. Its ability to measure 
RNFL thickness, GCC integrity, and optic nerve head 
morphology, including lamina cribrosa status, makes 
it a cornerstone of modern glaucoma diagnosis and 
monitoring. By facilitating early detection and precise 
tracking of glaucomatous damage, OCT plays a vital 
role in preserving vision and improving patient 
outcomes (Table 2).

AI tools can now detect glaucoma with sensitivity 
>90% using only fundus photos or OCT scans, often 
outperforming general ophthalmologists in early-stage 
diagnosis.

3.2. DL and CNNs
CNNs, a subclass of deep learning algorithms, have 

transformed medical image analysis. Their specific 
capacity to automatically extract and learn hierarchical 
visual characteristics from retinal pictures makes them 
especially well-suited for ophthalmic applications. 
CNNs have proven to have outstanding diagnostic 
capabilities in the detection of diabetic glaucoma and 
other retinal pathologies. For important pathological 
markers like vascular abnormalities, RNFL thinning, 
and optic disc cupping- markers of glaucomatous 
damage and diabetic retinopathy—reported area 
under the curve (AUC) values frequently surpass 
0.90. The layered architecture of CNNs—comprising 
convolutional, pooling, and fully connected layers—
stands in contrast to traditional machine learning 
models, which rely on handcrafted features and 
domain-specific knowledge. This structure allows them 
to progressively learn complicated patterns by starting 
with low-level elements like edges and textures and 
working their way up to high-level features like blood 
vessel morphology or optic disc structure. Such a 
feature hierarchy is helpful in identifying traces of 
clinical symptoms that may not be apparent to the 
unaided eye or a conventional diagnosis, particularly 
in situations that are early stage or overlap, like 
diabetic glaucoma. The rise of CNN-based approaches 
involved the presence of large annotated datasets such 
as Eyepatch (heavily used for diabetic retinopathy 
detection), RIM-ONE (Retinal Images for Optic Nerve 

Table 2.  Imaging Modalities Ideal for AI Integration in Glaucoma and Their Benefits
Imaging Modality Description AI-Relevant Benefits

OCT Cross-sectional imaging of retina 
and optic nerve

High-resolution data; layer segmentation; ideal 
for structural damage detection

Fundus Photography 2D images of the retina and optic 
disc

Widely available; large datasets; enables deep 
learning for optic nerve head analysis

Scanning Laser Ophthalmoscopy 
(SLO)

High-contrast retinal imaging using 
laser scanning

Detailed visualization of nerve fiber layer; aids in 
precise feature extraction

OCT-Angiography (OCT-A) Non-invasive imaging of retinal 
and choroidal microvasculature

Provides vascular biomarkers; useful for 
detecting perfusion changes in glaucoma

Visual Field Testing (SAP) Measures functional vision loss 
across the field of view

Enables AI to correlate structural-functional loss; 
prediction of disease progression

Ultrasound Biomicroscopy 
(UBM)

High-frequency ultrasound 
imaging of anterior segment 

structures

Structural input for angle-closure diagnosis; 
enhances anatomical interpretation

Corneal Topography/
Tomography Maps corneal shape and curvature

Useful for detecting secondary glaucomas; 
supplementary input for comprehensive AI 

models

Anterior Segment OCT
Visualizes structures in the 

anterior chamber (e.g., angle, iris, 
lens)

High-definition input for angle-closure glaucoma; 
integration with clinical decision tools
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Evaluation) and ORIGA (Online Retinal Fundus Image 
Database for Glaucoma Analysis) that have significantly 
contributed to the increase in CNN performance in 
ophthalmology, by providing representative and 
diverse image sets pair for supervised learning. These 
data have allowed CNN models to also generalize 
across differing populations and imaging conditions, 
having overall more robustness and translational 
efficacy.

Moreover, transfer learning—a technique where 
models pretrained on large, generic image datasets like 
ImageNet are fine-tuned on retinal data—has further 
improved model performance in settings where 
domain-specific datasets are limited (Figure 3) [23]. In 
ophthalmic AI applications, CNN-based models have 
been integrated into tools capable of segmenting optic 
nerve head boundaries, classifying the cup-to-disc 
ratio, detecting microaneurysms or neovascularization, 
and even predicting disease progression. Additionally, 
recent innovations such as attention mechanisms 
and hybrid models combining CNNs with recurrent 
layers or transformers are pushing the boundaries 
of performance and interpretability. CNNs have 
drawbacks despite their  great accuracy;  they 
frequently operate as "black boxes," providing no 
insight into their decision-making procedures, 
which makes clinical adoption difficult. Because of 
this, explainable AI frameworks that superimpose 

heatmaps or saliency maps to show which areas 
of the image affected the model's prediction are 
becoming more and more popular. These frameworks 
are crucial for gaining the trust of clinicians and 
obtaining regulatory approval (Table 3). Nonetheless, 
the application of CNNs in ophthalmology represents 
a significant advancement in automated diagnosis, 
with potential to democratize eye care, support early 
detection in underserved regions, and reduce the 
burden on overextended healthcare systems. Their 
continued evolution—alongside improvements in 
dataset diversity, interpretability, and multimodal 
integration—positions CNNs as a cornerstone of AI-
driven solutions for complex ocular conditions such as 
diabetic glaucoma [24] (Table 4).

3.2.1. Fundus-AI in telemedicine: Cloud-based 
glaucoma screening
The integration of  fundus-AI technology into 
telemedicine platforms is transforming the screening 
process for glaucoma by facilitating remote, cloud-
based analysis of colour fundus pictures. This 
technology is particularly useful for the early diagnosis 
and treatment of this eye-threatening condition. 
Preventing permanent vision impairment requires 
prompt detection of glaucoma, which is characterised 
by progressive optic nerve injury that is sometimes 
only discovered after severe structural loss. In many 

Figure 3. Application of AI/ML in Glaucoma Screening and Treatment.
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places, access is limited by the requirement for 
specialised equipment and interpretation, which 
restricts the application of conventional screening 
methods. These challenges are addressed by fundus-
AI systems that use deep learning algorithms trained 
to identify glaucomatous changes such as increased 
cup-to-disc ratio, neuroretina rim thinning, and 
peripapillary atrophy directly from fundus images. 

Internal validation experiments of these AI models 
have proved its great diagnostic accuracy (89.7%) 
and area under the curve of the receiver operating 
characteristic (AUC) of 0.93, with excellent sensitivity 
and specificity values in detecting glaucoma suspects. 
External validation in diverse populations has 
confirmed the robustness of these algorithms with an 
AUC of 0.85 and accuracy of 83.5%, thus highlighting 

Table 3. CNN-Detectable Glaucoma Features and Their Clinical Significance
CNN-Detectable Feature Description Clinical Significance

CDR Ratio of the diameter of the optic 
cup to the entire optic disc

Increased CDR (>0.6) is a hallmark of 
glaucomatous optic neuropathy

Neuroretinal Rim Thinning Loss of rim tissue around the optic 
nerve head

Early sign of glaucoma; especially significant 
in the inferior and superior regions

RNFL Defects Focal or diffuse RNFL loss in fundus 
images

Indicates axonal damage and progression of 
glaucoma

Peripapillary Atrophy (PPA) Atrophic changes around the optic 
disc

Often associated with glaucomatous damage; 
more common in myopic eyes

Optic Disc Hemorrhage Flame-shaped hemorrhage at the 
disc margin A strong predictor of glaucoma progression

Asymmetry in CDR Between Eyes Unequal cup-to-disc ratio between 
the two eyes

Inter-eye asymmetry (>0.2) may suggest 
glaucomatous damage

Vessel Bending at Cup Edge Blood vessels bend sharply into the 
optic cup

Associated with deepening of the cup and 
glaucomatous excavation

Bayonetting of Blood Vessels Sharp angulation of blood vessels 
over the edge of the cup Indicates advanced glaucomatous cupping

Laminar Dots Visibility Exposure of lamina cribrosa within 
the optic cup Sign of severe optic nerve head damage

Paracentral Visual Field Defects 
(via indirect inference)

Early glaucomatous field loss inferred 
from fundus and OCT patterns

Critical for early detection when central 
vision is still preserved

Table 4.  Representative CNN Architectures in Glaucoma Diagnosis
CNN Architecture Use/Benefit in Glaucoma Diagnosis
AlexNet Used for glaucoma classification, achieving high accuracy on retinal fundus image datasets.

VGG, ResNet, MobileNet Common architectures used for transfer learning in glaucoma detection from fundus 
images. They are effective for feature extraction and classification.

YOLO (You Only Look Once) Used as a component in a two-step system to first detect the optic disc region in fundus 
photographs, and then classify it as glaucomatous or non-glaucomatous.

U-Net Primarily used for segmenting the optic disc and optic cup, which is a crucial step in 
calculating the cup-to-disc ratio (CDR) for glaucoma screening.

GlauNet A new CNN architecture specifically designed for glaucoma diagnosis using OCT-
angiography (OCTA) imaging.

Hybrid Models
Combine CNNs with other deep learning techniques like Bidirectional Long Short-Term 

Memory (BiLSTM) or Vision Transformers (EViT) to leverage different feature types (e.g., 
spatial and temporal) for improved performance.

Custom 2D CNNs Shallow CNN architectures can be designed with a few convolutional layers to be 
computationally efficient for real-time glaucoma diagnosis from fundus images.
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their generalizability in clinical settings [25].
Images of the fundus are taken in the primary clinic 

or at a screening site and then securely transmitted 
to a cloud server as done in the telemedicine 
f ra m e wo rk  t h a t  u t i l i z e s  c l o u d  c o m p u t i n g  to 
facilitate remote assessment. These photos are then 
automatically analyzed by an AI system, which flags 
any individuals displaying signs that may suggest 
they have the potential to develop glaucoma. This 
computerized triage significantly lessens the burden 
on ophthalmologists. It also enables to diagnose at-risk 
patients early and conduct further examinations and 
intervention more objectively. Telehealth platforms 
such as Fundus-AI would lower barriers for individuals 
of low socioeconomic status or living in rural areas to 
be screened in communities with limited access to eye 
care specialists and without on-site expert evaluation 
[26].

Moreover, since it also facilitates the use of 
commercial  fundus cameras rather than more 
expensive imaging equipment such as optical 
coherence tomography, this approach allows a cost-
effective and scalable glaucoma screening in resource 
limited regions. Fast turnaround time for AI analysis 
also enhances the efficiency of clinical workflow 
through the potential for immediate referral and start 
of therapy before irreversible damage to the optic 
nerve. The data privacy and patient confidentiality 
measure of these systems is fundamental for retaining 
patient trust and ensuring compliance to healthcare 
law [27].

In conclusion, Fundus-AI integrated in telemedicine 
systems provides a robust method for glaucoma 
screening, which combines the performance of 
AI-based image evaluation with the convenience 
of an application for remote healthcare service. 
Such a technology is very promising and likely to 
revolutionize glaucoma detection worldwide, improve 
early diagnosis, prevent vision loss, and decrease 
the public health burden related to this chronic eye 
condition [28].

3.2.2. Smartphone-based offline AI screening in 
India
These challenges can be effectively tackled using 
Fundus-AI systems, which employ deep learning 
algorithms trained to identify glaucomatous changes—
such as an increased cup-to-disc ratio, neuroretinal 
rim thinning, and peripapillary atrophy—directly 
from fundus images. Internal validation studies of 
these AI models have demonstrated strong diagnostic 
performance, achieving an AUC of 0.93 and an 
accuracy of 89.7%, along with excellent sensitivity and 

specificity in detecting glaucoma suspects. Type 2 DM 
risk prediction in addition, four external validations 
in different populations have verified the stability 
of the models, where AUC was 0.85 and accuracy of 
83.5%, respectively, demonstrating the generalization 
characteristics of these risk prediction models in a real 
scenario [29].

Images of the fundus captured at primary care 
clinics or screening locations are securely transmitted 
to cloud servers, which are part of the telemedicine 
framework's cloud computing for remote image 
interpretation. By automatically scanning these photos, 
the AI system notifies those with symptoms that could 
be indicative of glaucoma. This computerized triage 
significantly reduces the burden on ophthalmologists 
and also makes it possible to detect patients at risk 
earlier and provide them with comprehensive eye 
exams and intervention. Fundus-AI telemedicine 
strategies overcome these health disparities by 
increasing screening coverage in low-income rural 
communities and by minimizing the need for on-site 
specialist examination [30].

Additionally, since this method requires only 
accessible fundus cameras rather than more advanced 
imaging techniques such as optical coherence 
tomography, it promotes low-cost glaucoma screening 
and is adaptable to resource-poor areas. Rapid 
turnaround for AI analysis also maximizes the clinical 
workflow to the overall benefit of allowing early 
referral and therapy to be started before the optic 
nerve is greatly damaged. Information security and 
patient privacy procedures are important for these 
systems to gain patient trust and ensure compliance 
with healthcare regulations [31, 32]. Combining the 
convenience of telehealth-based care delivery with the 
precision of AI-enhanced image analysis, telemedicine 
platforms-based Fundus-AI represents a powerful 
glaucoma screening tool. Such technology has great 
potential for changing the current paradigm of 
glaucoma diagnosis worldwide, and could contribute 
to the early detection of the disease, which in turn 
prevents vision impairment and subsequently reduces 
public health problems related to this chronic eye 
disease (Table 5).

3.2.3. Limitations and Ethical Considerations
Although AI-based tools for glaucoma screening 
and diagnosis hold significant promise, there are 
several limitations and ethical considerations that 
must be carefully considered to deploy these tools 
safely, equitably, and effectively. A first issue is the 
generalizability of AI models to varying populations 
and imaging devices. A large number of algorithms 
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are learned and tested from demographic or imaging 
system-specific data that potentially preclude their 
performance to other populations with distinct 
ethnic, anatomical or clinical conditions, or with 
different equipment and acquisition protocols. Such 
non-generalizability may contribute to diminished 
diagnostic accuracy and clinical utility in real-world 
(e.g., underserved or globally diverse) populations. The 
issue of algorithmic bias is closely connected, as this 
phenomenon occurs when training datasets are biased 
against specific social groups. If AI systems are based 
on data from one population (say people of European 
descent), they could be less accurate when it comes 
to spotting glaucoma in other racial or ethnic groups, 
making disparities in health worse instead of better. 
Another important concern is the interpretability (or 
transparency) of many AI-models, especially based 
on deep learning. These so-called “black box” systems 
only produce a diagnostic output but do not explain it, 
this resulting in a very difficult trust and verification 
path for clinicians. This lack of transparency raises 
concerns not only for clinical oversight, but also for 
regulatory authorization and the concept of patient 
consent. In addition, the application of AI systems in 
telemedicine and cloud seems to face the challenges 
on data safety and patient privacy. Retinal images 
and patient health information are sensitive medical 
records that should be processed in compliance 
with privacy regulations like HIPAA or GDPR. Patient 
trust and legal compliance can be weakened due to 
the risks of data breach, unauthorized access and 
misuse of data, particularly while data is exchanged 
and stored in cloud infrastructures. However, there 
is a need for transparency of how data is collected, 
processed and used, who has contributed to it, and 
what are the mechanisms for consent, anonymization 
and auditability as well as of the mechanisms for 
ethical deployment. Finally, the use of AI tools 
should not foster over-reliance or de-skilling of 
human administrators, but rather that AI should be 

a complement to, and not a replacement for, human 
clinical judgement. In summary, while AI holds 
transformative potential in glaucoma care, addressing 
these technical, ethical, and regulatory challenges 
is essential to ensure its equitable, trustworthy, and 
clinically sound integration into ophthalmic practice 
[33-36].

4. Artificial intelligence approaches to 
evaluate prognostication, treatment 
response and survival in Diabetic 
Glaucoma

Diabetic glaucoma represents a significant intersection 
of two chronic,  vision-threatening conditions: 
diabetes mellitus and glaucoma. Characterized by 
elevated intraocular pressure, retinal ischemia, and 
progressive optic nerve damage, diabetic glaucoma 
often poses diagnostic and prognostic challenges due 
to its complex and multifactorial pathophysiology. 
Traditional clinical approaches to assess disease 
progression, treatment response, and long-term 
outcomes rely heavily on periodic imaging, visual field 
testing, and clinician expertise—methods that can be 
limited in predictive accuracy and scalability. 

A I ,  e s p e c i a l ly  M L  a n d  D L ,  h a s  p e r f o r m e d 
impressively in the past few years with potential to 
transform the management of glaucoma. By analyzing 
a vast amount of data from images, electronic 
health records (EHR), and clinical notes, AI models 
can approximate surgical specifics, evaluate the 
effectiveness of therapy, predict the pathological 
progression, and personalize individualized care. 
These technologies include CNNs for optic disc imaging 
and a survival model such as DeepSurv and random 
survival forests (RSF), which offer early intervention 
and improved clinical decision-making. AI may be able 
to integrate multiple clinical variables to augment 
prognostication and facilitate long-term visual 

Table 5.  AI-Powered Platforms in Glaucoma Detection: Settings & Performance
Platform Modality Setting Performance
Google DeepMind + 
Moorfields OCT scans Clinics/hospitals 94.5% accuracy in detecting 

diseases

IDx-DR (Digital Diagnostics) Fundus photos Primary care, retail clinics 87% Sens, 90% Spec for DR; now 
expanding

Cloud-based fundus-AI 
(telemedicine)

Fundus photos via 
cloud Remote clinics AUC 0.93 internal; AUC 0.85 

external

Offline smartphone AI Smartphone fundus Community/rural outreach 
(India)

93.7% Sens, 85.6% Spec for 
referable glaucoma
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preservation particularly in the setting of diabetic 
glaucoma for which systemic metabolic influences the 
ocular outcomes [37].

4.1. Prognostication & Progression Prediction
AI models are increasingly used to predict the 
progression of glaucoma, including the likelihood and 
timing of glaucoma surgery. For example, survival 
models such as DeepSurv, RSF, and Gradient Boosting 
Survival (GBS) applied to structured EHR data achieved 
strong predictive performance—DeepSurv reached a 
C-index of ~0.775 and mean AUC ~0.80 in forecasting 
progression to surgery. Important predictive features 
included age, baseline visual acuity, intraocular 
pressure, and use of multiple glaucoma medications, 
which aligned with clinician judgment [38]. Another 
study combined structured EHR features with free-text 
clinical notes via deep learning and NLP techniques. 
The combined model achieved an AUC of ~0.899 and 
F1 score ~0.757 in predicting near-term progression, 
outperforming models using only structured data 
or only text [39]. Key predictors included IOP, visual 
acuity, medication regimens, and terms from clinical 
notes indicating urgency or risk of surgery.

4.2. Treatment Response & Surgical Outcome 
Prediction
Machine learning and deep learning models have 
also been applied to predict treatment and surgical 
outcomes in glaucoma. At Stanford, ML models 
(including Random Forests and CNNs) were used 
to predict surgical failure—defined by inadequate 
IOP reduction, increased medication use, or need 
for revision. These achieved accuracy of ~75% and 
AUROC up to ~76%, with better performance for 
IOP outcomes (AUROC ~86%) than for medication 
changes (~70%). These predictive models can inform 
personalized surgical planning and patient counselling 
[40].

4.3. Predicting Diabetic Glaucoma Changes

Earlier neural network research specifically targeted 
ocular changes in patients with both diabetes 
and glaucoma. Simple feedforward and recurrent 
networks—for instance Jordan–Elman neural 
networks—were trained on clinical parameters such 
as cup-to-disc ratio, HbA1c, intraocular pressure, 
and visual field mean deviation. These models 
predicted progression with up to 95% accuracy for 
direct modelling and ±15% confidence intervals for 
predicting visual field decline [41] (Table 6). 

4.4. Imaging-Based Prognostication
Beyond EHR data, AI-driven imaging approaches are 
being explored to predict progression or treatment 
response. Deep learning models analyses of optic 
nerve head focal notching and RNFL thinning via 
fundus segmentation achieve glaucoma detection 
accuracy of over 90%. While not explicitly focused 
on diabetic glaucoma, similar approaches could be 
adapted to quantify and predict progression in diabetic 
populations [42].

4.5. Explainability & Trust
A I  s u r v iva l  m o d e l s  t ra d i t i o n a l ly  h ave  l owe r 
interpretability. Yet, techniques like Shapley values 
and cumulative hazard curve visualizations help model 
transparency. Studies highlight explainable features 
such as age, visual acuity, and medication usage—
mirroring clinicians’ risk factors and boosting trust 
in AI predictions. Similarly, models incorporating 
clinical text used explainability tools like Grad-CAM 
to emphasize predictive note phrases such as "urgent 
referral [43].

5. The Bionic Eye: Future Vision Restoration

The bionic eye, or visual prosthesis, is a state-of-the-
art innovation designed to restore functional vision 
in people affected by advanced degenerative retinal 
disorders. Conditions such as retinitis pigmentosa (RP) 
and age-related macular degeneration (AMD) involve 

Table 6.  AI Methodologies and Outcomes in Diabetic Glaucoma Prognostication
Task AI Methodology Key Outcomes
Progression to Surgery DeepSurv, RSF, GBS survival models C-index ~0.775, AUC ~0.80
Near-term Progression Risk Structured + NLP deep learning models AUC ~0.899, F1 ~0.757

Predicting Surgical Failure Random Forest, CNN prediction models Accuracy ~75%, AUROC up to 86% for IOP 
outcomes

Diabetic Glaucoma Progression Feedforward/Jordan-Elman ANN 
models

Up to ~95% accuracy in progression 
prediction

Imaging-based Prognosis CNNs for optic cup–disc segmentation Glaucoma detection AUC >90%
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the gradual loss of photoreceptors—rods and cones—
ultimately causing severe vision loss and blindness. 
Crucially, while these diseases damage photoreceptors, 
the inner retinal neurons, optic nerve, and visual 
cortex may remain anatomically intact, providing a 
foundation for artificial stimulation. By utilizing this 
residual neural circuitry, bionic eye systems generate 
artificial visual signals, allowing patients to perceive 
light patterns and regain partial visual function [45].

The working principle of the bionic eye begins with 
visual scene capture using an external imaging device, 
typically a miniature video camera attached to glasses 
worn by the patient. The images are processed in real 
time by a portable processor, which converts them 
into electrical stimulation patterns. These signals 
are then transmitted wirelessly to an implantable 
microelectrode array surgically positioned on the 
retina (epiretinal or subretinal) or, in some designs, 
directly within the visual cortex. The electrodes 
stimulate remaining functional retinal ganglion cells or, 
alternatively, higher visual centers such as the lateral 
geniculate nucleus or primary visual cortex [46, 47]. 
The brain interprets this stimulation as phosphenes—
fl a shes  or  spot s  o f  l ight —which  t he  pa t ient 
progressively learns to decode into rudimentary visual 
information.

Several types of bionic eye systems have been 
developed and tested in clinical settings. Among the 
most well-known is the Argus II Retinal Prosthesis 
System (Second Sight Medical Products), which uses 
an epiretinal implant with 60 electrodes and has 
received regulatory approval in Europe and the United 
States. The PRIMA system (Pixium Vision) represents 
a subretinal approach, placing a photovoltaic chip 
beneath the retina to convert pulsed near-infrared 
light into electrical currents that stimulate bipolar 
cells. Meanwhile, the Gennaris Bionic Vision System 
(developed by Bionic Vision Technologies in Australia) 
explores a cortical implant strategy for patients who 
lack a functional retina altogether. Each of these 
systems offers unique advantages and challenges. 
Retinal implants are more natural in preserving the 
visual pathway but require a functional optic nerve, 
while cortical systems can bypass retinal damage but 
demand more complex neurosurgical procedures and 
pose greater risks [48-50].

While current-generation bionic eye devices do not 
restore vision to normal levels, they can significantly 
improve spatial orientation, object localization, 
and navigation for individuals who are otherwise 
completely blind. Patients using these systems 
often describe perceiving outlines of objects, high-
contrast edges, or motion, which aids in mobility 

and independence. However, several limitations 
persist. The resolution of current prosthetic vision is 
low, typically limited to coarse pixel arrays, and the 
learning curve for interpreting artificial visual stimuli 
can be long and demanding. Power consumption, 
biocompatibility, long-term implant stability, and 
individualized adaptation to neural variability remain 
active areas of research [51].

To overcome these limitations, recent efforts focus 
on integrating ML and AI into the visual processing 
units of bionic systems. AI algorithms can optimize 
image preprocessing, enhance contrast, detect key 
objects in the visual field, and translate scenes into 
simplified, interpretable visual patterns tailored to 
each user’s perceptual capacity. Moreover, advances in 
neuromorphic engineering—which mimics biological 
neural processing—promise more efficient, low-
latency, and energy-saving solutions for real-time 
visual information encoding. Future iterations may 
also incorporate closed-loop feedback, where real-time 
cortical responses inform adjustments to stimulation 
parameters for more natural visual perception [52].

In conclusion, the bionic eye offers transformative 
potential for patients with irreversible retinal 
degeneration, providing a viable pathway to partial 
visual restoration in cases where conventional 
therapies fail. As this field evolves, the convergence of 
neural interface technology, AI-driven processing, and 
precision medicine will play a pivotal role in enhancing 
the effectiveness, personalization, and accessibility of 
visual prosthetic systems. Continued interdisciplinary 
collaboration between ophthalmology, neuroscience, 
bioengineering, and computer science is essential to 
bring these innovations from experimental labs to 
widespread clinical reality [53].

5.1.  Bionic Eye Works
In glaucoma—a neurodegenerative eye disease 
characterized by the progressive loss RGCs and 
damage to the optic nerve—vision loss is typically 
irreversible, particularly in advanced stages where 
significant portions of the optic nerve and associated 
RGCs have degenerated. In such cases, conventional 
treatments aimed at lowering IOP are no longer 
effective in restoring lost vision [54]. The advent of 
bionic eye technologies offers a potential breakthrough 
for patients with end-stage glaucoma by bypassing the 
damaged visual pathway and directly stimulating the 
remaining functional components of the visual system 
to restore a rudimentary form of sight. The bionic 
eye system operates through a multi-step process 
designed to mimic the natural visual pathway. First, 
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visual input capture is achieved using external glasses 
fitted with a camera that records real-time video of the 
environment. This input is transmitted to an external 
signal processing unit, which processes the visual 
scene by extracting key features such as shapes, edges, 
and motion. The unit then converts this information 
into encoded electrical signals optimized for neural 
stimulation.

In the electrical stimulation stage, these signals are 
wirelessly transmitted to an implanted microelectrode 
array (MEA), which is strategically placed either on 
the retinal surface (epiretinal), beneath the retina 
(subretinal), or in some advanced designs, directly into 
the visual cortex. In glaucoma, where photoreceptors 
may still be intact but RGCs are compromised, the 
approach typically focuses on stimulating surviving 
RGCs or bypassing them entirely by targeting the visual 
cortex [55-57]. Once implanted, the MEA delivers 
precise electrical pulses to activate the remaining RGCs 
or cortical neurons. This neuron activation mimics 
the natural signalling that would have been generated 
by healthy photoreceptor-RGC interactions. These 
artificial signals are then transmitted via the intact 
portions of the optic nerve—if still functional—or 
directly to the brain in cortical systems.

Finally, in the perception formation phase, the brain 
interprets these electrical signals as visual stimuli, 
resulting in the perception of phosphenes—flashes or 
patterns of light. Though this does not restore normal 
vision, it enables users to recognize shapes, perceive 
movement, and navigate environments with greater 
autonomy [58]. For patients with advanced glaucoma 
and extensive optic nerve damage, cortical bionic 
systems may offer the most promise, as they bypass 
the eye entirely. While still experimental and limited in 
resolution, bionic eye technologies hold great potential 

for restoring functional vision in glaucoma patients 
with otherwise untreatable blindness (Table 7).

Future advancements in bionic eye technology, 
particularly for glaucoma patients who suffer from 
irreversible vision loss due to RGC or optic nerve 
degeneration, will depend on overcoming several key 
engineering and biomedical challenges. A primary 
focus is on improving visual resolution, which remains 
limited in current systems. Most bionic eyes can only 
produce low-resolution images consisting of coarse 
shapes or flashes of light (phosphenes), due to the 
limited number of electrodes in the MEA. Enhancing 
electrode density while maintaining spatial selectivity 
is essential for delivering more precise and localized 
electrical stimulation. This would enable users to 
perceive more detailed visual scenes, better recognize 
objects, and navigate complex environments with 
greater independence. However, increasing electrode 
count must be balanced with power consumption, 
thermal safety, and signal cross-talk, which pose 
engineering constraints [59].

Another promising direction is the development 
of closed-loop stimulation systems. In current open-
loop designs, the stimulation patterns are pre-
programmed and do not adjust based on user feedback 
or neural response. In contrast, closed-loop systems 
aim to incorporate real-time feedback from the brain 
or remaining visual pathways, allowing the device 
to modulate stimulation parameters dynamically. 
Such adaptive systems would significantly enhance 
visual function by personalizing stimulation patterns 
based on the patient’s neural response, fatigue levels, 
or environmental context [60]. Implementing this 
requires integration of neural recording capabilities 
into the implant, as well as sophisticated signal 
processing algorithms capable of interpreting and 

Table 7.  Types of Visual Prostheses: Mechanisms and Notable Devices
Type Implant Location How It Works Notable Devices or Trials

Retinal – Epiretinal On the inner surface of 
the retina (above RGCs)

External glasses capture images; 
microelectrodes stimulate RGCs 

directly.

Argus II system (~60electrode 
array)

Retinal – Subretinal Beneath photoreceptors, 
near bipolar cells

Photodiode chip converts captured 
light into electrical signals, 

stimulating deeper retinal layers.

Alpha IMS, PRIMA 
(photovoltaic implants)

Suprachoroidal Between choroid and 
sclera

Electrode array placed less invasively; 
signals delivered to RGC via external 

camera.

Experimental devices in 
clinical trials

Cortical Direct stimulation of the 
visual cortex

Bypasses eye and optic nerve; 
ideal when optic pathways are 

nonfunctional.

Orion (Second Sight), Debelle’
s cortical implant
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responding to complex brain activity.
Biocompatibil ity and long-term stabil ity of 

implanted components are also critical engineering 
concerns. The materials used in electrode arrays 
and implant casings must minimize the risk of 
inflammation, fibrosis, or rejection while maintaining 
consistent performance over many years. Advances 
in biomaterials and coating technologies can reduce 
immune responses and enhance electrical conductivity. 
Furthermore, ensuring mechanical durability in the 
dynamic environment of the eye or brain is essential to 
prevent device degradation or malfunction [61].

Thermal safety is another consideration, especially 
as devices become more complex and power-intensive. 
Excessive heat generation from continuous stimulation 
or wireless data transfer could damage surrounding 
neural tissue. Therefore, thermal management 
strategies such as passive heat dissipation structures 
and efficient circuitry are necessary.

Future of bionic eyes in glaucoma management 
lies in achieving higher resolution, real-time adaptive 
stimulation, and long-term biocompatibility and safety. 
These innovations will be crucial for transitioning 
bionic vision from basic light perception to meaningful, 
functional sight for patients with end-stage glaucoma.

5.2. Types of Bionic Eye Systems
Bionic eye systems are emerging as a revolutionary 
approach to restoring some degree of visual function in 
patients with end-stage glaucoma, where conventional 
treatments are no longer effective due to irreversible 
loss of RGCs and optic nerve damage. A variety of 
bionic eye systems—targeting different parts of 
the visual pathway—have been developed or are in 
advanced stages of research to address these complex 
needs. Retinal implants, such as the Argus II (by 
Second Sight, now under Cortigent), are designed to sit 
epileptically, on top of the retina, above the remaining 
RGCs. This system was approved in the EU in 2011 
and the U.S. in 2013 for use in patients, with over 350 
individuals implanted. Users reported improved light 
perception, motion detection, and basic navigation 
abilities, with about 60% showing significant visual 
improvements compared to only 5% when the device 
was turned off. However, the system offered limited 
resolution—only 60 electrodes producing roughly 
60 phosphene points of light—and a relatively high 
adverse event rate (26%). Production ceased in 
2020, but legacy support continues under Cortigent. 
While Argus II has not been approved specifically for 
glaucoma, it provides a foundational technology for 
future retinal prosthetics in glaucoma patients with 

partial RGC survival [62].
The PRIMA implant by Pixium Vision represents 

another class of retinal prosthetics—subretinal 
implants. These devices are placed beneath the 
photoreceptors and use photovoltaic stimulation 
powered by infrared light projected from smart 
glasses. In a clinical trial involving patients with AMD, 
a 2 mm chip improved visual acuity from around 
20/450 to 20/160 in most participants, with some 
reaching 20/63 when using magnification features. 
PRIMA’s ability to provide “form vision”—recognition 
of shapes and patterns—rather than just basic light 
flashes, represents a significant advancement and 
holds potential for glaucoma cases where outer retinal 
layers remain functional.

For advanced glaucoma with significant optic 
nerve damage, optic nerve and cortical implants 
are of greater interest. The Bionic Vision Australia 
consortium and its commercial spin-off, Bionic Vision 
Technologies, have explored suprachoroidal and 
epiretinal implants targeting residual optic nerve 
pathways. Their "Diamond Eye" system, incorporating 
biocompatible diamond electrodes, aims to reduce 
power consumption and improve stability. Initial 
prototypes have been tested in seven patients since 
2012, with ongoing clinical evaluations for broader 
deployment [63]. In cases where both the retina and 
optic nerve are severely compromised—typical in 
late-stage glaucoma—cortical implants offer the most 
direct route to visual restoration. The Monash Vision 
Group's Gennaris system places an implant on the 
visual cortex, bypassing the eye entirely. Supported 
by Australia’s MRFF “Cortical Frontiers” program, 
this technology is preparing for first-in-human trials. 
It targets completely blind individuals, including 
those with glaucoma, by stimulating the brain's visual 
processing centres directly.

Similarly, Neural ink’s Blind sight project focuses 
on a cortical neural interface. It has received FDA 
Breakthrough Device designation and aims to begin 
human trials by late 2025. This system aspires to 
restore basic vision in totally blind individuals, 
including those with glaucoma, although current 
technology still produces grainy, low-resolution 
images. Challenges such as precise cortical mapping, 
long-term implant stabil ity,  and safe surgical 
procedures remain significant [64] (Table 8). While 
bionic eye systems were initially developed for retinal 
degenerative diseases, innovations in retinal, optic 
nerve, and cortical prostheses offer promising new 
avenues for restoring functional vision in glaucoma 
patients.  These technologies,  although still  in 
developmental stages for glaucoma-specific use, mark 
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a transformative shift in how vision loss.

5.3. Integration with AI and Computer Vision
Integration of AI and computer vision is rapidly 
advancing the functionality of bionic eye systems, 
especially in enhancing visual perception for glaucoma 
patients with profound vision loss. AI algorithms can 
pre-process visual input captured by the external 
camera, identifying and emphasizing critical features 
such as edges, contrast, object outlines, and motion—
elements essential  for spatial  awareness and 
navigation. This data is then translated into optimized 
electrical stimulation patterns, improving the clarity 
and relevance of the visual signals delivered to the 
brain. Through computer vision, dynamic scene 
analysis (e.g., object recognition, facial detection, 
obstacle avoidance) can be incorporated, allowing the 
system to prioritize important stimuli in real-time 
[65]. Moreover, AI enables user-specific adaptation, 
learning from behavioural feedback to refine image 
simplification and stimulus delivery. In combination, 
these innovations can transform crude phosphene-
based perception into functionally meaningful vision, 
significantly improving independence and quality of 
life for individuals with end-stage glaucoma (Table 9).

6. Challenges and Future Directions in AI-
Enhanced Prosthetic Vision for Glaucoma

Even some of the best performing dependent AI-based 
prosthetic vision systems for glaucoma patients are not 
without limitations which restrict their efficacy as well 
as utility. The main barrier is the low-spatial resolution 
of currently available implants, which highly limits 
the information that can be transferred. Moreover, the 
low electrode number still limits the level of detail 
and clarity of the images perceived, and users still 

struggle to interpret complex environments properly 
even if processed with state-of-the-art AI-based 
preprocessing and object recognition algorithms. 
Real-world conditions are also highly varying, which 
further complicates the problem. Variations in lighting, 
occlusion, and messy background can degrade the 
efficacy of AI-based algorithms to accurately detect 
and classify objects. Even though the use of an 
adaptive pre-processing suppresses these effects to 
some extent, the development of robust models that 
can be used as is across a wide range of situations is a 
continuous research goal.

This idea of personalization is also important, 
and incredibly messy. AI systems will need to learn 
and adapt continually to the particular preferences, 
context, and operational objectives of specific users. A 
sub problem to achieve this and is developing efficient 
feedback and reinforcement learning which can 
customize the recognition output without increasing 
the user fatigue or the computational overhead. 
Ethical considerations are a major concern in the 
development of such systems, as they often use cloud 
computing and data sharing to provide model updates 
and improvement. Maintaining system responsiveness 
while handling sensitive visual information securely 
and privately is a difficult task both technically and 
legally [66, 67].

Where we're headed Vision into the future is 
increasingly focused on enhancing implant resolution 
via higher-density electrode arrays and better spatial 
selectivity to provide even richer visual inputs for AI 
to work with. Progress in neuromorphic computing 
and edge AI could allow for real-time processing on 
the device, decreasing latency and reliance on cloud 
computing. Furthermore, multimodal integration, for 
instance, integrating AI enhanced prosthetic vision 
with auditory or haptic perceptions, may also enhance 
the perception and interaction of users.

Table 8.  Comparison of Different Bionic Eye Technologies
Implant Type Systems Target Patients Vision Quality Stage

Retinal (epiretinal) Argus II RP with intact optic 
nerve

Light/motion, basic shapes 
(60 electrodes)

Commercial (Argus 
II discontinued)

Retinal (subretinal) PRIMA Dry AMD with preserved 
inner retina

Form vision, improved 
acuity (~20/160) Clinical trials

Suprachoroidal BVA/BVT prototypes RP, AMD Early-stage; pending trials Pre-commercial 
clinical

Cortical (surface) Monash Vision 
Group (Gennaris)

Optic nerve/retina loss, 
glaucoma

Undetermined; upcoming 
trials

Preclinical → 
human trials ahead

Cortical 
(intracortical)

Neural ink 
“Blindsight” Complete blindness Low resolution; early data Human trials 

expected late 2025
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Table 9. Comparative Overview of AI Techniques for Diabetic Glaucoma Detection and the Emerging Role of Bionic Eye 
Technologies

Section Key Aspect Details Examples/
Models Advantages Limitations Future 

Directions

Diabetic 
Glaucoma

Definition & 
Pathophysiology

Combination 
of diabetic 
retinopathy 

(DR) and 
glaucomatous 
damage due 
to elevated 

IOP and 
microvascular 

changes

Understanding 
the overlap 
improves 
diagnosis  

- More 
complex 
disease 

management

Often 
asymptomatic in 

early stages  
- Requires 

multimodal 
imaging

Personalized 
medicine using 
AI biomarkers

Diagnostic 
Techniques

Traditional 
methods

Visual field 
testing, 

OCT, fundus 
photography, 

tonometry

- Humphrey 
Visual Field 

Analyzer  
- OCT 

Spectralis

Clinically 
validated  

High accuracy 
in clinical 

hands

Expensive  
Subjective 

interpretation  
- Not scalable

AI-assisted 
image reading 

for mass 
screening

AI Approaches 
for Detection

Machine 
Learning (ML)

Algorithms 
trained on 
imaging & 

clinical data

SVM, Random 
Forest, KNN

Good for small 
to medium 

datasets

Feature 
engineering 

needed  
Less robust for 

noisy data

Hybrid ML + DL 
models

Deep Learning 
(DL)

End-to-end 
learning 

from images 
(fundus, OCT, 

etc.)

CNNs, ResNet, 
VGG16, U-Net

High accuracy  
Feature 

extraction 
automatic

Needs large 
datasets  

Black-box nature

Explainable 
AI Federated 

learning

Multimodal 
Imaging + AI

Integration of 
modalities

Combine OCT, 
fundus, and 
clinical data

Multistream 
CNNs, 

Attention-
based models

Better 
accuracy  

Reduces false 
positives

High data 
complexity  

Inter-modality 
variation

Multimodal 
data 

harmonization

AI Tools & 
Datasets

Common 
datasets used

Public datasets 
for training/

validation

DRIONS-DB, 
RIM-ONE, 
REFUGE, 
APTOS

Benchmarking 
possible  
Enables 

reproducibility

Limited diabetic 
glaucoma-

specific data

Need for 
diabetic 

glaucoma-
specific 
datasets

Clinical 
Implementation

Deployment in 
practice

AI tools used 
in clinics and 

screening 
programs

IDx-DR, Google 
DeepMind, 

EyeArt

Scalable  
Remote 

screening 
possible

Regulatory and 
ethical hurdles  
Data bias issues

Real-world 
validation 

studies

Ethical and 
Regulatory 
Considerations

Bias, 
interpretability, 

privacy

Ensuring 
fairness and 

patient safety

GDPR, HIPAA, 
FDA-AI 

guidelines

Patient data 
protection  

- Clinical trust

Regulation 
lagging behind 

tech

Adaptive AI 
governance 
frameworks
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Ultimately, overcoming these challenges requires 
interdisciplinary collaboration among engineers, 
clinicians, AI researchers, and patients. Continued 
innovation will pave the way for more natural, 
functional, and personalized prosthetic vision systems, 
dramatically improving quality of life for glaucoma 
patients with profound vision loss [68-71] (Table 10).

6.1. Data and Regulatory Challenges in AI-Driven 
Glaucoma Diagnosis and Neuroprosthetics
The advancement of robust and clinically reliable AI 
systems in glaucoma diagnosis and neuroprosthetics 
devices, such as visual prostheses, critically depends 
on access to large, diverse, and well-annotated 
datasets. These datasets must encompass a wide 
range of glaucoma severity, demographic diversity, 
imaging modalities, and clinical contexts to ensure 
AI models generalize well across different patient 
populations and real-world environments.  In 
glaucoma care, publicly available datasets like RIM-
ONE, ORIGA, and DRIONS-DB have accelerated AI 
development by providing retinal images annotated 
with optic nerve head changes, RNFL thinning, and 
other glaucomatous markers. However, these datasets 
often lack comprehensive diversity in ethnicity, disease 
stages, or multimodal imaging inputs such as OCT 
combined with fundus photography. These restrictions 
could affect the medical reliability of AI algorithms in 

underrepresented groups through introducing bias and 
reducing their resilience [72]. Also, there is a serious 
absence of standardized datasets that capture dynamic 
visual environments, patient-device interactions, and 
implant-specific constraints in the field of glaucoma 
neuroproteins, where AI aids in real-time image 
preprocessing and neural stimulation to restore visual 
perception [73].   The creation and evaluation of AI 
models suited to the unique challenges of glaucoma-
related vision loss and prosthetic vision restoration is 
restricted by this deficiency. Adoption of uniform label 
guidelines for glaucoma characteristics, cooperative 
data-sharing activities across institutions and regions, 
and adherence to ethical frameworks protecting 
patient privacy and data security are all necessary to 
close these data gaps. By improving dataset diversity 
and quality, such initiatives would allow for more 
precise, broadly applicable AI systems [74, 75].

At the same time, a major change in regulatory 
strategies is required to include AI into glaucoma 
diagnoses and neuroprosthetic devices. AI models 
that  are constantly changing due to software 
upgrades and learning are difficult for traditional 
regulatory frameworks, which were created for 
static medical devices. Because AI technologies are 
iterative, regulatory bodies such as the European 
Medicines Agency (EMA) and the US Food and Drug 
Administration (FDA) are creating adaptive regulatory 
procedures [76]. Regulatory surveillance of glaucoma 

Bionic Eye 
Technologies Overview & goal

Restore vision 
via retinal 
implants 

or cortical 
interfaces

Argus II, 
PRIMA Bionic 
Eye, Gennaris 

System

Vision 
restoration  

Useful in 
advanced 

stages

Limited 
resolution  
- Requires 

surgery  
- High cost

Integration 
with AI for 

closed-loop 
feedback

AI in Bionic Eye

Adaptive 
processing 

& scene 
recognition

Neuromorphic 
chips, DL-

based scene 
analysis

Real-time 
adaptation 

Personalized 
image 

reconstruction

Power 
consumption  

Real-time 
processing 
constraints

Brain-AI 
interfaces  

Energy-
efficient 

processors

Comparative 
Prospects

AI Detection vs 
Bionic Eye

Non-invasive 
early detection 

vs invasive 
restoration

-

Early 
intervention vs 
quality-of-life 
enhancement

Detection can't 
restore vision  

Bionics not 
suitable for 
early-stage

Convergence: 
Smart implants 
that detect & 

adapt

Future Trends Integration & 
Innovation

AI-enhanced 
bionic vision, 
cloud-based 
diagnostics, 
bio-AI fusion

-

Personalized, 
accessible, 
and smart 

ophthalmic 
care

Interdisciplinary 
challenges

Digital twins  
AI-bionic 
synergy 

platforms
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Table 10. Comprehensive Overview of AI-Based Strategies for Early Detection of Diabetic Glaucoma and Technological 
Advances Toward Bionic Eye Integration

Section Aspect Detailed 
Description

Examples/
Studies

Implications 
for Diabetic 
Glaucoma

Limitations/
Challenges

Future 
Research 
Prospects

Disease 
Background

Pathophysiology 
of Diabetic 
Glaucoma

A complex 
interaction 

between diabetic 
retinopathy 

(vascular 
damage due to 
hyperglycemia) 

and glaucomatous 
optic neuropathy 

(elevated 
intraocular pressure 
and retinal ganglion 

cell death).

- N/A

Highlights the 
need for early 

multimodal 
screening due 
to overlapping 

disease profiles.

Late detection 
due to subtle 

symptoms and 
overlapping 

presentations.

Identification 
of shared 

biomarkers for 
AI targeting.

Clinical Diagnosis Traditional 
Diagnostic Tools

Use of intraocular 
pressure 

testing, fundus 
examination, OCT, 

and visual field 
analysis to detect 

glaucomatous 
changes.

OCT Spectralis  
Humphrey Visual 

Field Analyzer

Still considered 
the gold 

standard in 
clinical settings.

Subjective 
interpretation, 

costly equipment, 
and limited 

accessibility in 
rural/low-income 

areas.

AI 
augmentation 

for mass 
screening and 
automation.

Imaging 
Modalities in 
Detection

Retinal Fundus 
Imaging

Non-invasive, 2D 
imaging of the 

retina useful for 
detecting optic 

disc cupping and 
diabetic changes.

APTOS Dataset  
DRIONS-DB

Easily integrated 
with AI image 
classifiers for 
automated 
screening.

Lacks depth 
information, 
can't capture 

subtle nerve fiber 
changes.

Integration 
with OCT and 

depth-learning 
architectures.

Optical 
Coherence 

Tomography 
(OCT)

Provides 3D 
cross-sectional 

retinal images for 
measuring RNFL 

thickness and optic 
nerve integrity.

REFUGE 
Challenge  
RIM-ONE

Highly sensitive 
for early 

glaucomatous 
changes.

Expensive, limited 
data availability for 
diabetic glaucoma.

Data synthesis 
using 

generative AI 
to improve 
datasets.

AI Methodologies 
in Early Detection

Machine 
Learning (ML)

Supervised learning 
techniques using 
hand-engineered 

features (e.g., cup-
to-disc ratio, vessel 

tortuosity).

Random Forests, 
SVMs applied on 
fundus/OCT data

Can yield good 
accuracy on 

small/moderate 
datasets.

Manual feature 
engineering limits 

scalability and 
generalizability.

Transition 
to semi-

supervised 
ML using 
unlabeled 
datasets.

Deep Learning 
(DL)

Neural networks 
that learn 

hierarchical 
features from large 
annotated datasets 

(fundus/OCT).

CNNs (e.g., 
ResNet50, 

VGG16, 
DenseNet121)

Automatically 
detects minute 

pathological 
changes with 
high accuracy.

Requires large, 
diverse datasets. 

"Black box" 
nature limits 

interpretability.

Explainable 
AI (XAI) 

frameworks to 
improve trust 

in medical use.
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Hybrid & 
Multimodal AI

Combines multiple 
imaging inputs and 
clinical metadata 
using ensemble 
or multistream 

models.

Attention-
Guided CNNs for 
combining OCT 
and fundus data

Improves 
accuracy and 
reduces false 
positives in 

complex cases.

Data 
harmonization 
and processing 

challenges.

Development 
of AI fusion 
models for 
real-time 
diagnosis.

Diabetic-Specific 
AI Challenges

Dataset 
Limitations

Most public 
datasets lack 

annotated cases of 
diabetic glaucoma.

Lack of 
specificity 

in RIM-ONE, 
REFUGE, etc.

AI models 
trained on 

general 
glaucoma 
data may 

underperform.

Model 
generalization 

suffers; bias risk 
increases.

Creation of 
large-scale, 

diabetic-
glaucoma-

specific 
datasets.

Clinical Overlap

Co-existing 
signs of diabetic 
retinopathy and 

glaucoma confuse 
model outputs.

Retinal 
hemorrhages 
vs optic nerve 

changes

Reduced 
specificity in AI 

predictions.

Need for fine-
grained feature 

disentanglement.

Use of multi-
task learning 

to identify 
overlapping 

disease cues.

Bionic Eye: 
Concept and 
Applications

Overview of 
Bionic Vision

Implantable 
systems designed 
to restore partial 

vision via electrical 
stimulation of 
retina or visual 

cortex.

Argus II (Second 
Sight)  

PRIMA Retina 
Implant

Offers hope 
for patients 

with end-stage 
vision loss from 
glaucoma or DR.

Only effective 
in advanced 

blindness; requires 
surgery.

Combining AI 
to optimize 

image 
translation 

into 
stimulation 

patterns.

AI Integration in 
Bionic Eyes

AI helps interpret 
camera inputs into 
neural stimulation 

signals for 
enhanced spatial 
awareness and 

object recognition.

Gennaris Cortex 
System  

Neuromorphic 
vision chips

AI enables 
better 

adaptation 
to user 

environments 
and dynamic 

scenes.

Real-time 
processing 
and power 

consumption 
limitations.

Use of low-
power AI 
hardware 

(e.g., edge AI, 
neuromorphic 

chips).

AI vs Bionic 
Restoration

Functional 
Objective

AI focuses on early 
detection and 

prevention, while 
bionic systems 
aim at vision 
restoration.

Screening tools 
vs implanted 
prosthetics

Complements 
clinical 

management 
across the 

disease 
spectrum.

Bionics do not 
prevent disease; AI 

does not restore 
vision.

Unified 
frameworks 

where AI 
guides bionic 
function (e.g., 

adaptive 
stimulation).

Ethical and 
Socioeconomic 
Considerations

Bias, Privacy, 
and Access

Ensuring equity in 
AI development, 

and ethical 
deployment of 
high-cost bionic 

technologies.

HIPAA, GDPR, 
AI MedTech 
regulation

Vital for 
widespread 

adoption and 
trust.

Technology access 
disparities; AI 

bias due to non-
representative 

data.

Community-
centered 
dataset 

building and 
equitable 
bionic eye 

trials.

Future 
Convergence

AI-Bionic 
Synergy

Vision of integrating 
AI-driven diagnostic 

tools with smart 
bionic interfaces 
that adapt in real 

time.

"Closed-loop" 
vision systems

Merges 
prevention and 

restoration 
paradigms.

High development 
cost; lack of 

interdisciplinary 
platforms.

Digital twins, 
real-time 
brain-AI 

interfaces, 
personalized 

visual 
prosthetics.
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neuroprosthetics must guarantee their efficacy, safety, 
and transparency, with a focus on explainability and 
user-centered design. It has to cover cybersecurity 
threats, strong data governance, and responsibility 
for AI-driven choices that affect visual perception. 
Additionally, long-term safety monitoring, means 
of ongoing post-market review, and proof of AI 
efficiency across a range of populations should all be 
prerequisites for regulatory clearance. In summary, 
rich and diversified data infrastructure coupled with 
flexible regulatory environment will be required for 
successful deployment of AI for glaucoma diagnosis 
and neuroprosthetics. Ultimately, the approach will 
lead to improved diagnosis, greater facilitation, 
and smart prosthesis that can provide vision and 
independence to glaucoma patients,  all  whilst 
encouraging innovation and maintaining clinical trust 
[77].

6.1.1. Importance of Large-Scale, Diverse, and Well-
Annotated Datasets for AI in Glaucoma Diagnosis 
and Neuroprosthetics 
High-quality large datasets that are diverse, well-
annotated, and clinically relevant are needed to 
develop and refine AI systems for diagnosing glaucoma 
and for neuroprosthetic devices (both prosthetic vision 
and non-visual prosthetic devices). To reach for a 
strong and generalizable performance, AI models have 
to be trained on full variability dataset for glaucoma, 
as glaucoma presents with clinically diverse course 
in different patients, most with subtle structure and 
functional changes [78].

Enormous datasets are necessary to enable training 
of deep learning models that can identify complicated 
patterns of glaucomatous optic neuropathy. These 
datasets should represent a wide range of disease 
severity from mild glaucoma with few clinical signs 
to those with large losses of retinal ganglion cells and 
visual field abnormalities. This spectrum allows AI 
systems to recognize glaucoma in its earliest forms 
(and thus as its most treatable stage) and perhaps 
before an individual experiences irreversible vision 
loss [79]. Moreover, longitudinal data can assist AI 
models in predicting the development of disease and in 
the planning of personalized therapeutic interventions.

Diversity is also key in the datasets. Age, race and 
other demographics may play a significant role in 
the prevalence and characteristics of glaucoma. For 
example, certain subtypes of glaucoma are more 
frequently found in certain types of people, such as 
those of Asian or African descent. If applied in the 
real-world clinical context, data that derivate from 
an underrepresentation of these populations may 

lead to AI models that provide biased or less accurate 
predictions. There is a requirement for datasets to 
contain a mix of patient demographics, including 
underrepresented races and age groups in order 
to resolve such disparities and to ensure that AI 
developments are unbiased and effective across the 
spectrum [80]. Requisite for successful AI training and 
validation in glaucoma management is high-quality 
annotation. In order to detect small GON changes, 
clinical images such as optic nerve head photos, OCT 
RNFL thickness maps as well as VF test results had 
to be adequately annotated. AI models are able to 
distinguish between glaucomatous damage and normal 
anatomic changes because of the accurate labelling of 
features such as optic disc cupping, neuroretinal rim 
thinning and localised RNFL irregularities. Similarly, 
the ability of a model to relate structural damage to 
functional loss would be enhanced by incorporating 
brain recordings or patient functional measurements, 
such as visual field sensitivity. Our multi-modal 
annotation approach allows comprehensive AI 
evaluations involving all structural and functional 
information to enhance the diagnostic accuracy 
[81]. Datasets for neuroprosthetics and prosthetic 
vision for glaucoma patients with serious vision loss 
must go beyond still photos to incorporate real-time 
patient actions, brain stimulation the preferences, 
and dynamic interactions with the surroundings. By 
capturing this precise data, computerized platforms 
can better restore functional vision by tailoring 
stimulation patterns and responding to the user's 
visual demands [82].

Finally, standardized data formats and ethical 
frameworks for data sharing are essential to enable 
collaboration across research institutions and 
healthcare providers. Ensuring patient privacy and 
compliance with regulations, while promoting open 
access to diverse and well-annotated datasets, will 
accelerate AI advancements in glaucoma diagnosis and 
treatment [83].

The availability of  large-scale,  diverse,  and 
meticulously annotated datasets is vital for developing 
AI systems that can effectively support early glaucoma 
detection, monitor disease progression, and enhance 
neuroprosthetics function—ultimately improving 
patient outcomes in glaucoma care worldwide.

6.1.2. Evolving Regulatory Frameworks
The integration of AI into glaucoma diagnostic 
tools and neuroprosthetics devices presents novel 
regulatory challenges that traditional medical device 
frameworks are ill-prepared to address. Unlike 
conventional static devices, AI-driven systems used 
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in glaucoma care—such as automated optic nerve 
head analysis, RNFL segmentation, and bionic vision 
prostheses—are often adaptive, capable of continuous 
learning and updating post-deployment. This dynamic 
capability, while enhancing clinical utility, complicates 
regulatory oversight because it requires monitoring 
not only the initial safety and efficacy but also the 
evolving behaviour of the algorithms over time [84].

A primary concern in glaucoma management is 
ensuring that AI algorithms maintain consistent 
diagnostic accuracy across diverse patient populations, 
including different ethnicities and stages of disease. As 
glaucoma is often asymptomatic until advanced stages, 
reliance on AI for early detection and monitoring 
demands rigorous validation that includes variability 
in optic nerve morphology, image quality,  and 
coexisting ocular conditions. Regulatory bodies, such 
as the U.S. FDA, must therefore adopt flexible, risk-
based approval pathways that consider the unique 
adaptive nature of these systems and their potential to 
learn from new clinical data continuously [85].

Transparency and explainability of AI algorithms 
are critical in glaucoma care, where clinical decisions 
regarding treatment initiation or progression 
monitoring hinge on AI-derived outputs. Regulatory 

frameworks increasingly emphasize the need for 
interpretable AI models, allowing ophthalmologists to 
understand the rationale behind algorithmic decisions, 
such as identifying suspicious optic disc changes or 
RNFL thinning. Explainability promotes clinician 
trust and facilitates auditability, which is essential for 
patient safety and medico-legal accountability.

Data privacy and security are also paramount, 
given the sensitive nature of patient ocular images, 
electronic health records, and neuroprosthetics device 
data streams. Compliance with regulations like the 
HIPAA and the GDPR requires secure handling, storage, 
and transmission of patient information used both for 
training AI models and in real-time clinical use [86, 
87].

Post-market surveillance mechanisms are essential 
to detect performance drift, algorithmic bias, or 
adverse events associated with AI-driven glaucoma 
diagnostics and neuroprosthetics.  Continuous 
monitoring protocols must be established to evaluate 
device performance in diverse clinical environments 
and over extended timeframes, ensuring sustained 
safety and efficacy. This necessitates new regulatory 
strategies to approve software updates and retraining 
cycles without compromising patient safety (Figure 4).

Figure 4. Steps to Manage and Implement Regulatory Obligations
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T he  evo lv i n g  l a n dsc a p e  o f  A I  i n  g l a u c om a 
diagnostics and neuroprosthetics demands regulatory 
frameworks that accommodate adaptive learning, 
enforce transparency, safeguard patient data, and 
ensure ongoing performance monitoring. Addressing 
these challenges is crucial to responsibly translate 
AI innovations into improved clinical outcomes for 
glaucoma patients worldwide [88-91].

6.2. Affordability and Accessibility
Cost represents one of the biggest hurdles for the 
broad use of modern glaucoma diagnostic and 
neuroprosthetic equipment in resource-constrained 
regions. These state-of-the-art technologies — 
which include OCT, AI-aided imaging platforms, and 
bionic eye systems — frequently require expensive 
equipment, specialized maintenance and a trained 
staff, making them beyond the reach of many health 
care systems in poor countries or underdeveloped 
rural areas. Economic constraints preclude the timely 
identification and proper treatment of glaucoma 
thereby people with a high risk of glaucoma present 
late and continue their sight losing without stop [92, 
93].

Creative solutions that blend scalable technology 
deployment with financial sustainability are needed 
to address this problem. By combining resources, 
infrastructure, and knowledge from governments, non-
profits, academic institutions, and industry players, 
public-private partnerships (PPPs) present a potential 
option. By supporting programs for training, improving 
distribution networks, and lowering the cost of 
technology, such collaborations can make advanced 
glaucoma care accessible to more people. PPPs, for 
instance, can assist primary care clinics in using AI-
based screening technology, which can improve early 
detection rates and decrease the need for expensive 
specialist visits [94-97].

Another significant aspect of cost reduction is 
scalable production. Through economies of scale, mass 
manufacture of standardized, modular components—
like portable OCT devices or tiny fundus cameras—can 
reduce unit costs. The viability of creating glaucoma 
diagnostic instruments at costs appropriate for low-
income markets is further boosted by improvements in 
inexpensive materials and manufacturing operations, 
such as 3D printing and inexpensive electronics [98]. 
Furthermore, reach may be increased without a large 
infrastructure investment through developing AI 
algorithms that run effortlessly on low-cost hardware 
like cellphones.

Combining cost-effective technology design with 

strong PPP frameworks is essential to overcoming 
economic barriers and democratizing access to 
glaucoma diagnostics and neuroprosthetics vision 
restoration globally. Such efforts will help reduce 
the global burden of glaucoma-related blindness by 
enabling timely intervention and ongoing monitoring 
in resource-limited environments [99].

6.3. Challenges and Future Perspectives
Notwithstanding the aforementioned developments, 
there is a need to overcome several hurdles for 
optimal application of AI in glaucoma management. 
First, are large; diverse, and well- annotated datasets 
targeted to glaucoma and other optic neuropathies. 
Good quality data is important in training AI models 
that generalise beyond the ‘white’  population 
and in varying the presentation of disease by 
ethnic group and comorbidity. In addition, ethical 
aspects including patient privacy, data security, and 
algorithmic transparency need to be continuously 
addressed, with aim of generating trust and facilitating 
responsible innovation. Regulatory paradigms will 
need to be adjusted to address such adaptive artificial 
intelligence while ensuring glaucoma diagnostic and 
neuroprosthetic systems are very safe and effective 
[100].

Lastly, equitable availability is still an issue. 
Glaucoma is a disproportionately debilitating disease 
for the underserved and low-resource communities, 
in which advanced diagnostics and neuroprosthetic 
rehabilitation are usually unavailable secondary 
to cost and infrastructure.  To overcome these 
discrepancies, there is a clear need for collaboration 
between scientists, clinicians, industry and policy 
makers to develop scalable manufacturing, cost-
effective approaches and representative clinical trials 
[101]. With AI in glaucoma care, the approach toward 
glaucoma is expected to shift gears—from reactive 
therapeutic intervention to proactive, personalized 
attention that includes early detection, continuous 
surveillance, and functional recovery. By providing 
greater diagnostic accuracy, predictive risk scores, as 
well as improved performance of neuroprosthetics AI 
enables a more proactive response to the challenges 
of vision loss for clinicians and patients alike. As 
continued interdisciplinary teamwork, ethical 
oversight, and focus on accessibility persist among AI-
driven technologies, hope remains for millions affected 
by this blinding global disease, that glaucoma care will 
be transformed [102-104].

7. Conclusion
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The leading cause of irreversible blindness is glaucoma 
due to optic nerve injury and RGC loss. Although 
clinical care has improved, early diagnosis is still 
difficult because of the subtle presentation, coexistence 
with other ocular diseases, and resource limitations 
in many areas. Early detection is crucial to avoid 
vision loss, but conventional tools like OCT, perimetry, 
and IOP monitoring are typically inadequate, 
particularly for patients with comorbidities (e.g., 
diabetes-retinopathy). AI brings an era-shifting 
solution to glaucoma screen, monitor and personalize 
management. Deep learning models, primarily CNNs, 
are able to process complex imaging data combined 
with clinical and demographic information, and they 
achieved better sensitivity and specificity than human 
experts in subtle changes in structure. Furthermore, 
through longitudinal integrative health records 
(including, among others, data from ophthalmic 
telemedicine), AI can make early, risk-stratifying 
predictions of disease course, including severe 
vision loss, prompting tailored interventions. But 
beyond diagnosis, AI enhances the long-term disease 
management by automatically establishing standards, 
reducing variability and spotting real-time trends for 
personalized treatment adjustments. It also provides 
medication adherence via life tracking, patient 
reported outcomes and pretext alerts, increasing long-
term results and ultimately quality of life.

In severe stages of glaucoma in which there is blur 
vision AI is important not only for visual rehabilitation 
with the help of bionic eyes, but also brain-machine 
interface. These implants apply electrical current to 
viable retinal neurons or the visual cortex. Optimized 
image preprocessing emphasizes important data in 
the visual input such as edges and faces driven by 
an AI and an adaptive algorithm tailors stimulation 
parameters for improved handling. In addition, AI-
driven personalized neurofeedback enhances cortical 
plasticity, and facilitates the interpretation of artificial 
visual input. Although todays neuroprosthetics have 
not reached fully restored sight, the combined effect 
of the AI and prosthetic technologies promise useful 
recovery of vision, independence and better life quality 
for glaucoma patients.
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